1
|
Tschopp MS, Tortajada A, Hevia E. Selective Hydrogen Isotope Exchange Catalysed by Simple Alkali-Metal Bases in DMSO. Angew Chem Int Ed Engl 2025:e202421736. [PMID: 39804795 DOI: 10.1002/anie.202421736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/17/2024] [Accepted: 01/13/2025] [Indexed: 01/16/2025]
Abstract
Dedicated to Proferssor Robert E. Mulvey on the occasion of his 65th birthday. Isotope Exchange processes are becoming the preferred way to prepare isotopically labelled molecules, avoiding the redesign of multistep synthetic protocols. In the case of deuterium incorporation, the most used strategy has employed transition metals, that offer high reactivity under mild reaction conditions. Despite their success, the trade-off is that these metals are precious, so expensive, and often exhibit high toxicity. Therefore, alternative transition-metal-free protocols would be a welcome addition to this field. In this report we show how the simple bases NaHMDS (HMDS=hexamethyldisilazide) and NaCH2SiMe3 can efficiently and selectively promote deuteration of a wide range of C(sp2)-H and C(sp3)-H bonds in DMSO-d6, providing an easy and direct access to deuterated compounds. Heterocycles, fluoroarenes, N-heterocyclic carbenes, amides and other aromatic molecules could be deuterated under mild conditions using catalytic amounts of base. Mechanistic studies along with the isolation and characterisation of reaction intermediates have flagged up the importance of the metalated substrate and metalated solvent in solution, establishing an equilibrium between these compounds is crucial for the success of this approach. An alkali-metal effect was observed, with heavier alkali-metal amides being more reactive at room temperature, but their lower stability at higher temperatures made sodium bases the optimal reagents for Hydrogen Isotope Exchange.
Collapse
Affiliation(s)
- Melina S Tschopp
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Andreu Tortajada
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Eva Hevia
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
2
|
You Q, Ma Y, Woltornist RA, Lui NM, Spivey JA, Keresztes I, Collum DB. Sodium Alkyl(trimethylsilyl)amides: Substituent- and Solvent-dependent Solution Structures and Reactivities. J Am Chem Soc 2024; 146:30397-30421. [PMID: 39447193 DOI: 10.1021/jacs.4c10836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The preparation of sodium isopropyl(trimethylsilyl)amide (NaPTA), sodium (1-phenylethyl)(trimethylsilyl)amide (NaPETA), sodium tert-butyl(trimethylsilyl)amide (NaBTA), and isotopologues [15N]NaPTA and [15N]NaBTA are described. Solution structural studies using a combination of 29Si NMR spectroscopy, the Method of Continuous Variations, and density functional theory computations provided insights into aggregation and solvation in a range of solvents including toluene, N,N-dimethylethylamine, triethylamine, MTBE, THF, 1,2-dimethoxyethane (DME), diglyme, N,N,N',N'-tetramethylethylenediamine (TMEDA), N,N,N',N'-tetramethylcyclohexanediamine (TMCDA), N,N,N',N″,N″-pentamethyldiethylenetriamine (PMDTA). 12-crown-4, 15-crown-5, and 18-crown-6 revealed solvent- and substituent-dependent dimer-monomer mixtures with affiliated solvation numbers. Complexation of the three crown ethers documented both crown and substituent dependencies. Qualitative studies of reactivity showed a variety of reactions of NaPETA. Aminolysis of methyl benzoate with dialkylamines mediated by NaPTA afforded high yields of benzamides. Quantitative rate studies of aminolysis of methyl benzoate by NaPTA revealed a 47,000-fold range of rates. Detailed rate studies in toluene and THF showed dimer-based mechanisms. The role of primary- and secondary-shell solvation by THF is discussed, including nuances of methods used to separate the two contributions. PMDTA-solvated NaPTA monomer reacts as a monomer whereas bis-diglyme solvated monomer reacts as a dimer. Rate studies exploring the structure-reactivity correlations of the three crown ethers show mono- and bis-crown-based pathways in which 15-crown-5─the crown ether often said to be of choice for sodium─was decidedly inferior as an accelerant.
Collapse
Affiliation(s)
- Qiulin You
- Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Yun Ma
- Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Ryan A Woltornist
- Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Nathan M Lui
- Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Jesse A Spivey
- Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Ivan Keresztes
- Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - David B Collum
- Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
3
|
Spivey JA, Collum DB. Potassium Hexamethyldisilazide (KHMDS): Solvent-Dependent Solution Structures. J Am Chem Soc 2024; 146:17827-17837. [PMID: 38901126 PMCID: PMC11373885 DOI: 10.1021/jacs.4c03418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Solution structures of potassium hexamethyldisilazide [KHMDS] and labeled [15N]KHMDS were examined using a number of analytical methods including 29Si NMR spectroscopy and density functional theory computations. A combination of 15N-29Si couplings, 29Si chemical shifts, and the method of continuous variations reveals dimers, monomers, and ion pairs. Weakly coordinating monofunctional ligands such as toluene, N,N-dimethylethylamine, and Et3N afford exclusively dimers. 1,3-Dioxolane, THF, dimethoxyethane, hexamethylphosphoramide, and diglyme provide dimers at low ligand concentrations and monomers at high ligand concentrations. N,N,N',N'-Tetramethylethylenediamine and N,N,N',N'-tetramethylcyclohexanediamine provide exclusively dimers at all ligand concentrations at ambient temperatures and significant monomer at -80 °C. Studies of 12-crown-4 ran into technical problems. Equimolar 15-crown-5 forms a dimer, whereas excess 15-crown-5 affords a putative ion pair. Whereas equimolar 18-crown-6 also affords a dimer, an excess provides a monomer rather than a solvent-separated ion pair. [2.2.2]cryptand affords what is believed to be a contact-ion-paired cryptate. Solvation was probed using largely density functional theory (DFT) computations. Thermally corrected energies are consistent with lower aggregates and higher solvates at low temperatures, but the magnitudes of the computed temperature dependencies were substantially larger than the experimentally derived data.
Collapse
Affiliation(s)
- Jesse A Spivey
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - David B Collum
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
4
|
Bokouende SS, Kulasekara DN, Worku SA, Ward CL, Kajjam AB, Lutter JC, Allen MJ. Expanding the Coordination of f-Block Metals with Tris[2-(2-methoxyethoxy)ethyl]amine: From Molecular Complexes to Cage-like Structures. Inorg Chem 2024; 63:9434-9450. [PMID: 38016147 PMCID: PMC11129929 DOI: 10.1021/acs.inorgchem.3c02752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Low-valent f-block metals have intrinsic luminescence, electrochemical, and magnetic properties that are modulated with ligands, causing the coordination chemistry of these metals to be imperative to generating critical insights needed to impact modern applications. To this end, we synthesized and characterized a series of twenty-seven complexes of f-metal ions including EuII, YbII, SmII, and UIII and hexanuclear clusters of LaIII and CeIII to study the impact of tris[2-(2-methoxyethoxy)ethyl]amine, a flexible acyclic analogue of the extensively studied 2.2.2-cryptand, on the coordination chemistry and photophysical properties of low-valent f-block metals. We demonstrate that the flexibility of the ligand enables luminescence tunability over a greater range than analogous cryptates of EuII in solution. Furthermore, the ligand also displays a variety of binding modes to f-block metals in the solid state that are inaccessible to cryptates of low-valent f-block metals. In addition to serving as a ligand for f-block metals of various sizes and oxidation states, tris[2-(2-methoxyethoxy)ethyl]amine also deprotonates water molecules coordinated to trivalent triflate salts of f-block metal ions, enabling the isolation of hexanuclear clusters containing either LaIII or CeIII. The ligand was also found to bind more tightly to YbII and UIII in the solid state compared to 2.2.2-cryptand, suggesting that it can play a role in the isolation of other low-valent f-block metals such CfII, NpIII, and PuIII. We expect that our findings will inspire applications of tris[2-(2-methoxyethoxy)ethyl]amine in the design of light-emitting diodes and the synthesis of extremely reducing divalent f-block metal complexes that are of interest for a wide range of applications.
Collapse
Affiliation(s)
- Sergely Steephen Bokouende
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - D Nuwangi Kulasekara
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Sara A Worku
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Cassandra L Ward
- Lumigen Instrument Center, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Aravind B Kajjam
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Jacob C Lutter
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Matthew J Allen
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
5
|
Sreedharan R, Gandhi T. Masters of Mediation: MN(SiMe 3) 2 in Functionalization of C(sp 3)-H Latent Nucleophiles. Chemistry 2024; 30:e202400435. [PMID: 38497321 DOI: 10.1002/chem.202400435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/19/2024]
Abstract
Organoalkali compounds have undergone a far-reaching transformation being a coupling partner to a mediator in unusual organic conversions which finds its spot in the field of sustainable synthesis. Transition-metal catalysis has always been the priority in C(sp3)-H bond functionalization, however alternatively, in recent times this has been seriously challenged by earth-abundant alkali metals and their complexes arriving at new sustainable organometallic reagents. In this line, the importance of MN(SiMe3)2 (M=Li, Na, K & Cs) reagent revived in C(sp3)-H bond functionalization over recent years in organic synthesis is showcased in this minireview. MN(SiMe3)2 reagent with higher reactivity, enhanced stability, and bespoke cation-π interaction have shown eye-opening mediated processes such as C(sp3)-C(sp3) cross-coupling, radical-radical cross-coupling, aminobenzylation, annulation, aroylation, and other transformations to utilize readily available petrochemical feedstocks. This article also emphasizes the unusual reactivity of MN(SiMe3)2 reagent in unreactive and robust C-X (X=O, N, F, C) bond cleavage reactions that occurred alongside the C(sp3)-H bond functionalization. Overall, this review encourages the community to exploit the untapped potential of MN(SiMe3)2 reagent and also inspires them to take up this subject to even greater heights.
Collapse
Affiliation(s)
- Ramdas Sreedharan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Thirumanavelan Gandhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
6
|
Macdonald PA, Kennedy AR, Weetman CE, Robertson SD, Mulvey RE. Synthesis, characterisation, and catalytic application of a soluble molecular carrier of sodium hydride activated by a substituted 4-(dimethylamino)pyridine. Commun Chem 2024; 7:94. [PMID: 38678145 PMCID: PMC11055874 DOI: 10.1038/s42004-024-01184-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Recently main group compounds have stepped into the territory of precious transition metal compounds with respect to utility in the homogeneous catalysis of fundamentally important organic transformations. Inspired by the need to promote more sustainability in chemistry because of their greater abundance in nature, this change of direction is surprising since main group metals generally do not possess the same breadth of reactivity as precious transition metals. Here, we introduce the dihydropyridylsodium compound, Na-1,2-tBu-DH(DMAP), and its monomeric variant [Na-1,2-tBu-DH(DMAP)]·Me6TREN, and demonstrate their effectiveness in transfer hydrogenation catalysis of the representative alkene 1,1-diphenylethylene to the alkane 1,1-diphenylethane using 1,4-cyclohexadiene as hydrogen source [DMAP = 4-dimethylaminopyridine; Me6TREN = tris(N,N-dimethyl-2-aminoethyl)amine]. Sodium is appealing because of its high abundance in the earth's crust and oceans, but organosodium compounds have been rarely used in homogeneous catalysis. The success of the dihydropyridylsodium compounds can be attributed to their high solubility and reactivity in organic solvents.
Collapse
Affiliation(s)
- Peter A Macdonald
- WestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Alan R Kennedy
- WestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Catherine E Weetman
- WestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Stuart D Robertson
- WestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK.
| | - Robert E Mulvey
- WestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK.
| |
Collapse
|
7
|
Knüpfer C, Klerner L, Mai J, Langer J, Harder S. s-Block metal complexes of superbulky ( tBu 3Si) 2N -: a new weakly coordinating anion? Chem Sci 2024; 15:4386-4395. [PMID: 38516089 PMCID: PMC10952107 DOI: 10.1039/d3sc06896j] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
Sterically hindered amide anions have found widespread application as deprotonation agents or as ligands to stabilize metals in unusual coordination geometries or oxidation states. The use of bulky amides has also been advantageous in catalyst design. Herein we present s-block metal chemistry with one of the bulkiest known amide ligands: (tBu3Si)2N- (abbreviated: tBuN-). The parent amine (tBuNH), introduced earlier by Wiberg, is extremely resistant to deprotonation (even with nBuLi/KOtBu superbases) but can be deprotonated slowly with a blue Cs+/e- electride formed by addition of Cs0 to THF. (tBuN)Cs crystallized as a separated ion-pair, even without cocrystallized solvent. As salt-metathesis reactions with (tBuN)Cs are sluggish and incomplete, it has only limited use as an amide transfer reagent. However, ball-milling with LiI led to quantitative formation of (tBuN)Li and CsI. Structural characterization shows that (tBuN)Li is a monomeric contact ion-pair with a relatively short N-Li bond, an unusual T-shaped coordination geometry around N and extremely short Li⋯Me anagostic interactions. Crystal structures are compared with Li and Cs complexes of less bulky amide ligands (iPr3Si)2N- (iPrN-) and (Me3Si)2N- (MeN-). DFT calculations show trends in the geometries and electron distributions of amide ligands of increasing steric bulk (MeN- < iPrN- < tBuN-) and confirm that tBuN- is a rare example of a halogen-free weakly coordinating anion.
Collapse
Affiliation(s)
- Christian Knüpfer
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Lukas Klerner
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Jonathan Mai
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Jens Langer
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Sjoerd Harder
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| |
Collapse
|
8
|
Anderson DE, Tortajada A, Hevia E. New Frontiers in Organosodium Chemistry as Sustainable Alternatives to Organolithium Reagents. Angew Chem Int Ed Engl 2024; 63:e202313556. [PMID: 37801443 DOI: 10.1002/anie.202313556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/08/2023]
Abstract
With their highly reactive respective C-Na and N-Na bonds, organosodium and sodium amide reagents could be viewed as obvious replacements or even superior reagents to the popular, widely utilised organolithiums. However, they have seen very limited applications in synthesis due mainly to poor solubility in common solvents and their limited stability. That notwithstanding in recent years there has been a surge of interest in bringing these sustainable metal reagents into the forefront of organometallics in synthesis. Showcasing the growth in utilisation of organosodium complexes within several areas of synthetic chemistry, this Minireview discusses promising new methods that have been recently reported with the goal of taming these powerful reagents. Special emphasis is placed on coordination and aggregation effects in these reagents which can impart profound changes in their solubility and reactivity. Differences in observed reactivity between more nucleophilic aryl and alkyl sodium reagents and the less nucleophilic but highly basic sodium amides are discussed along with current mechanistic understanding of their reactivities. Overall, this review aims to inspire growth in this exciting field of research to allow for the integration of organosodium complexes within common important synthetic transformations.
Collapse
Affiliation(s)
- David E Anderson
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Andreu Tortajada
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Eva Hevia
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
9
|
You Q, Collum DB. Carbon-Nitrogen Bond Formation Using Sodium Hexamethyldisilazide: Solvent-Dependent Reactivities and Mechanisms. J Am Chem Soc 2023; 145:23568-23584. [PMID: 37857357 PMCID: PMC11373886 DOI: 10.1021/jacs.3c07317] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The solvent-dependent reactivity of sodium hexamethyldisilazide (NaHMDS) toward carbon-centered electrophiles reveals reactions that are poorly represented or unrepresented in the literature, including direct aminolysis of aromatic methyl esters to give carboxamides, nitriles, or amidines, depending on the choice of solvent. SNAr substitutions of aryl halides and opening of terminal epoxides are also examined. A combination of 1H and 29Si nuclear magnetic resonance (NMR) spectroscopic studies using [15N]NaHMDS, kinetic studies, and computational studies reveals the complex mechanistic basis of the preferences for simple aryl carboxamides in toluene and dimethylethylamine and arylnitriles or amidines in tetrahydrofuran (THF). A prevalence of dimer- and mixed dimer-based chemistry even starting from the observable NaHMDS monomer in THF solution is notable.
Collapse
Affiliation(s)
- Qiulin You
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - David B Collum
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
10
|
Lui NM, Collum DB. Sodiated Oppolzer Enolates: Solution Structures, Mechanism of Alkylation, and Origin of Stereoselectivity. Org Chem Front 2023; 10:4750-4757. [PMID: 38144519 PMCID: PMC10746328 DOI: 10.1039/d3qo01021j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
NMR spectroscopic studies reveal camphorsultam-derived sodium enolates known as Oppolzer enolates reside as monomers in neat THF and THF/HMPA solutions and as dimers in toluene when solvated by N,N,N',N'-tetramethylethylenediamine (TMEDA) and N,N,N',N'',N''-pentamethyldiethylenediamine (PMDTA). Density functional theory (DFT) computations attest to the solvation numbers. Rate studies show analogy with previously studied lithiated Oppolzer enolates in which alkylation occurs through non-chelated solvent-separated ion pairs. The origins of the selectivity trace to transition structures in which the alkylating agent is guided to the exo face of the camphor owing to stereoelectronic preferences imparted by the sultam sulfonyl moiety. Marked secondary-shell solvation effects are gleaned from the rate studies.
Collapse
Affiliation(s)
- Nathan M Lui
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - David B Collum
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
11
|
Anderson DE, Tortajada A, Hevia E. Highly Reactive Hydrocarbon Soluble Alkylsodium Reagents for Benzylic Aroylation of Toluenes using Weinreb Amides. Angew Chem Int Ed Engl 2023; 62:e202218498. [PMID: 36636916 DOI: 10.1002/anie.202218498] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/14/2023]
Abstract
Deaggregating the alkyl sodium NaCH2 SiMe3 with polydentate nitrogen ligands enables the preparation and characterisation of new, hydrocarbon soluble chelated alkylsodium reagents. Equipped with significantly enhanced metalating power over their organolithium counterparts, these systems can promote controlled sodiation of weakly acidic benzylic C-H bonds from a series of toluene derivatives under mild stoichiometric conditions. This has been demonstrated through the benzylic aroylation of toluenes with Weinreb amides, that delivers a wide range of 2-arylacetophenones in good to excellent yields. Success in isolating and determining the structures of key organometallic intermediates has provided useful mechanistic insight into these new sodium-mediated transformations.
Collapse
Affiliation(s)
- David E Anderson
- Department für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Andreu Tortajada
- Department für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Eva Hevia
- Department für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
12
|
Masiuk US, Faletrov YV, Kananovich DG, Mineyeva IV. Stereodivergent Assembly of 2,6- cis- and - trans-Tetrahydropyrans via Base-Mediated Oxa-Michael Cyclization: The Key Role of the TMEDA Additive. J Org Chem 2023; 88:355-370. [PMID: 36495268 DOI: 10.1021/acs.joc.2c02382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The stereodivergent synthesis of cis- and trans-2,6-disubstituted tetrahydropyrans (THPs) via sodium hexamethyldisilazide-promoted oxa-Michael cyclization of (E)-ζ-hydroxy α,β-unsaturated esters is presented. The cyclization affords the kinetically favored trans-THPs with high stereoselectivity (dr up to 93:7) at a low temperature (-78 °C), while the room-temperature reaction does not produce the thermodynamically preferred cis-THPs as major products and occurs with poor stereocontrol. The addition of tetramethylethylenediamine (TMEDA) significantly improves the stereochemical outcome of the room-temperature cyclization and allows attaining high cis-selectivity (dr up to 99:1). The remarkable effect of TMEDA indicates that the sodium cation plays an important role in controlling the stereoselectivity of the thermodynamically driven process, that is, complexation of the cation with the cyclization products results in diminished selectivity. DFT calculations support this conclusion, indicating a greater difference in Gibbs energies of sodium-free cis- and trans-enolates compared to the respective sodium chelate complexes. The synthetic utility of the method has been demonstrated by the formal syntheses of (+)-Neopeltolide and (-)-Diospongin B and the total synthesis of (-)-Diospongin A.
Collapse
Affiliation(s)
- Uladzimir S Masiuk
- Department of Chemistry, Belarusian State University, Leningradskaya 14, 220006 Minsk, Belarus.,School of Science, Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Yaroslav V Faletrov
- Department of Chemistry, Belarusian State University, Leningradskaya 14, 220006 Minsk, Belarus.,Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya 14, 220006 Minsk, Belarus
| | - Dzmitry G Kananovich
- School of Science, Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Iryna V Mineyeva
- Department of Chemistry, Belarusian State University, Leningradskaya 14, 220006 Minsk, Belarus
| |
Collapse
|
13
|
Lui NM, MacMillan SN, Collum DB. Lithiated Oppolzer Enolates: Solution Structures, Mechanism of Alkylation, and Origin of Stereoselectivity. J Am Chem Soc 2022; 144:23379-23395. [PMID: 36534055 PMCID: PMC10071589 DOI: 10.1021/jacs.2c09341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Camphorsultam-based lithium enolates referred to colloquially as Oppolzer enolates are examined spectroscopically, crystallographically, kinetically, and computationally to ascertain the mechanism of alkylation and the origin of the stereoselectivity. Solvent- and substrate-dependent structures include tetramers for alkyl-substituted enolates in toluene, unsymmetric dimers for aryl-substituted enolates in toluene, substrate-independent symmetric dimers in THF and THF/toluene mixtures, HMPA-bridged trisolvated dimers at low HMPA concentrations, and disolvated monomers for the aryl-substituted enolates at elevated HMPA concentrations. Extensive analyses of the stereochemistry of aggregation are included. Rate studies for reaction with allyl bromide implicate an HMPA-solvated ion pair with a +Li(HMPA)4 counterion. Dependencies on toluene and THF are attributed to exclusively secondary-shell (medium) effects. Aided by density functional theory (DFT) computations, a stereochemical model is presented in which neither chelates nor the lithium gegenion serves roles. The stereoselectivity stems from the chirality within the sultam ring and not the camphor skeletal core.
Collapse
Affiliation(s)
- Nathan M Lui
- Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University Ithaca, New York 14853-1301, United States
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University Ithaca, New York 14853-1301, United States
| | - David B Collum
- Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University Ithaca, New York 14853-1301, United States
| |
Collapse
|
14
|
Davison N, Quirk JA, Wills C, Dixon C, Waddell PG, Dawson JA, Lu E. Elucidating Solution-State Coordination Modes of Multidentate Neutral Amine Ligands with Group-1 Metal Cations: Variable-Temperature NMR Studies. Inorg Chem 2022; 61:15204-15212. [PMID: 36109881 PMCID: PMC9516690 DOI: 10.1021/acs.inorgchem.2c02457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Multidentate neutral amine ligands play vital roles in
coordination
chemistry and catalysis. In particular, these ligands are used to
tune the reactivity of Group-1 metal reagents, such as organolithium
reagents. Most, if not all, of these Group-1 metal reagent-mediated
reactions occur in solution. However, the solution-state coordination
behaviors of these ligands with Group-1 metal cations are poorly understood,
compared to the plethora of solid-state structural studies based on
single-crystal X-ray diffraction (SCXRD) studies. In this work, we
comprehensively mapped out the coordination modes with Group-1 metal
cations for three multidentate neutral amine ligands: tridentate 1,4,7-trimethyl-1,4,7-triazacyclononane
(Me3TACN), tetradentate tris[2-(dimethylamino)ethyl]amine
(Me6Tren), and hexadentate N,N′,N″-tris-(2-N-diethylaminoethyl)-1,4,7-triaza-cyclononane
(DETAN). The macrocycles in the Me3TACN and DETAN are identified
as the rigid structural directing motif, with the sidearms of DETAN
providing flexible “on-demand” coordination sites. In
comparison, the Me6Tren ligand features more robust coordination,
with the sidearms less likely to undergo the decoordinating–coordinating
equilibrium. This work will provide a guidance for coordination chemists
in applying these three ligands, in particular, the new DETAN ligand
to design metal complexes which suit their purposes. Combining variable-temperature nuclear
magnetic resonance
(VT NMR) and DFT calculations, this work elucidates the solution-state
coordination modes of three multidentate neutral amine ligands with
Group-1 metal cations. Our studies prove that two ligand-design building
blocks, that is, N-macrocycle (TACN) and N-sidearms, act as structure-dictating
and hemilabile coordinating sites, respectively. The concept could
be utilized in designing new catalytic systems, which anchor the metal
center on the macrocycle, while the sidearms serve as “on-demand”
protective coordination sites.
Collapse
Affiliation(s)
- Nathan Davison
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - James A. Quirk
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Corinne Wills
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Casey Dixon
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Paul G. Waddell
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - James A. Dawson
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Erli Lu
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| |
Collapse
|
15
|
Abstract
![]()
A synthetic approach
toward densely substituted enantiopure cyclic
sulfinamides possessing up to four consecutive stereogenic centers
was developed based on a completely diastereoselective SN2′ cyclization/tert-Bu cleavage sequence.
Diastereospecific transformation of the obtained scaffold into chiral
SVI derivatives such as sulfoximines and sulfonimidamides
is demonstrated.
Collapse
Affiliation(s)
- Glebs Jersovs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia.,Department of Chemistry, University of Latvia, Jelgavas 1, Riga LV-1004, Latvia
| | - Matiss Bojars
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia.,Department of Chemistry, University of Latvia, Jelgavas 1, Riga LV-1004, Latvia
| | - Pavel A Donets
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| | - Edgars Suna
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia.,Department of Chemistry, University of Latvia, Jelgavas 1, Riga LV-1004, Latvia
| |
Collapse
|
16
|
Bole LJ, Tortajada A, Hevia E. Enhancing Metalating Efficiency of the Sodium Amide NaTMP in Arene Borylation Applications. Angew Chem Int Ed Engl 2022; 61:e202204262. [PMID: 35420221 PMCID: PMC9323492 DOI: 10.1002/anie.202204262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Indexed: 12/12/2022]
Abstract
Though LiTMP (TMP=2,2',6,6'-tetramethylpiperidide) is a commonly used amide, surprisingly the heavier NaTMP has hardly been utilised. Here, by mixing NaTMP with tridentate donor PMDETA (N,N,N',N'',N''-pentamethyldiethylenetriamine), we provide structural, and mechanistic insights into the sodiation of non-activated arenes (e.g. anisole and benzene). While these reactions are low yielding, adding B(OiPr)3 has a profound effect, not only by intercepting the CAr -Na bond, but also by driving the metalation reaction towards quantitative formation of more stabilized sodium aryl boronates. Demonstrating its metalating power, regioselective C2-metalation/borylation of naphthalene has been accomplished contrasting with single-metal based protocols which are unselective and low yielding. Extension to other arenes allows for in situ generation of aryl boronates which can then directly engage in Suzuki-Miyaura couplings, furnishing a range of biaryls in a selective and efficient manner.
Collapse
Affiliation(s)
- Leonie J. Bole
- Departement für Chemie, Biochemie und PharmazieUniversität BernFreiestrasse 33012BernSwitzerland
| | - Andreu Tortajada
- Departement für Chemie, Biochemie und PharmazieUniversität BernFreiestrasse 33012BernSwitzerland
| | - Eva Hevia
- Departement für Chemie, Biochemie und PharmazieUniversität BernFreiestrasse 33012BernSwitzerland
| |
Collapse
|
17
|
Bole L, Tortajada A, Hevia E. Enhancing Metalating Efficiency of the Sodium Amide NaTMP in Arene Borylation Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Leonie Bole
- Universitat Bern Department of Chemistry, Biochemistry and Pharmaceutical Sciences SWITZERLAND
| | - Andreu Tortajada
- Universitat Bern Department of Chemistry, Biochemistry and Pharmaceutical Sciences SWITZERLAND
| | - Eva Hevia
- Universitat Bern Department of Chemistry and Biochemistry Freiestrasse 3 3012 Bern SWITZERLAND
| |
Collapse
|
18
|
Lüert D, Kreyenschmidt AK, Legendre CM, Herbst-Irmer R, Stalke D. A Sodium Sodate as Precursor for Lanthanide Bis(4- R-benzoxazol-2-yl)methanide Single-Molecule Magnets. Inorg Chem 2022; 61:5234-5244. [PMID: 35316598 DOI: 10.1021/acs.inorgchem.1c03714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
From the sodium sodate precursor [(Na(thf)6][Na{(4-Me-NCOC6H3)2CH}2] (1) three isostructural dinuclear lanthanide complexes [(μ-Cl)LnIII{(4-MeNCOC6H3)2CH}2]2 with Ln = Gd (2), Dy (3), and Er (4) based on the N,N'-chelating monoanionic bis(4-methylbenzoxazol-2-yl)methanide ligand (titled "Mebox") were synthesized and characterized by X-ray diffraction and magnetic measurements. The sodium precursor 1 was analyzed via X-ray diffraction and diffusion-ordered NMR spectroscopy experiments (DOSY-NMR) in order to investigate its aggregation in solution and the solid state. The sodium analog [(thf)3Na(NCOC6H4)2CH] (1') based on the bis(benzoxazol-2-yl)-methanide ligand (titled "box") was prepared and analyzed for comparison reasons. From the lanthanide derivatives 2-4, the DyIII complex 3 displays slow relaxation of magnetization at zero field, with a relaxation barrier of U = 315.7 cm-1. The coupling strength between the two lanthanide centers was estimated with the GdIII equivalent 2, giving a weak antiferromagnetic coupling of J = -0.035 cm-1.
Collapse
Affiliation(s)
- Daniel Lüert
- Department of Inorganic Chemistry, University of Goettingen, Tammannstrasse 4, 37077 Goettingen, Germany
| | - Anne-Kathrin Kreyenschmidt
- Department of Inorganic Chemistry, University of Goettingen, Tammannstrasse 4, 37077 Goettingen, Germany
| | - Christina M Legendre
- Department of Inorganic Chemistry, University of Goettingen, Tammannstrasse 4, 37077 Goettingen, Germany
| | - Regine Herbst-Irmer
- Department of Inorganic Chemistry, University of Goettingen, Tammannstrasse 4, 37077 Goettingen, Germany
| | - Dietmar Stalke
- Department of Inorganic Chemistry, University of Goettingen, Tammannstrasse 4, 37077 Goettingen, Germany
| |
Collapse
|
19
|
Davison N, Zhou K, Waddell PG, Wills C, Dixon C, Hu SX, Lu E. Versatile Coordination Modes of Multidentate Neutral Amine Ligands with Group 1 Metal Cations. Inorg Chem 2022; 61:3674-3682. [PMID: 35148099 PMCID: PMC9097481 DOI: 10.1021/acs.inorgchem.1c03786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 12/30/2022]
Abstract
This work comprehensively investigated the coordination chemistry of a hexa-dentate neutral amine ligand, namely, N,N',N"-tris-(2-N-diethylaminoethyl)-1,4,7-triaza-cyclononane (DETAN), with group-1 metal cations (Li+, Na+, K+, Rb+, Cs+). Versatile coordination modes were observed, from four-coordinate trigonal pyramidal to six-coordinate trigonal prismatic, depending on the metal ionic radii and metal's substituent. For comparison, the coordination chemistry of a tetra-dentate tris-[2-(dimethylamino)ethyl]amine (Me6Tren) ligand was also studied. This work defines the available coordination modes of two multidentate amine ligands (DETAN and Me6Tren), guiding future applications of these ligands for pursuing highly reactive and elusive s-block and rare-earth metal complexes.
Collapse
Affiliation(s)
- Nathan Davison
- Chemistry-School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
upon Tyne, United Kingdom, NE1 7RU
| | - Ke Zhou
- College
of Chemistry and Environmental Science & Shaanxi Key Laboratory
of Catalysis & Institute of Theoretical and Computational Chemistry, Shaanxi University of Technology. Hanzhong 723000, Shaanxi Province, China
| | - Paul G. Waddell
- Chemistry-School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
upon Tyne, United Kingdom, NE1 7RU
| | - Corinne Wills
- Chemistry-School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
upon Tyne, United Kingdom, NE1 7RU
| | - Casey Dixon
- Chemistry-School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
upon Tyne, United Kingdom, NE1 7RU
| | - Shu-Xian Hu
- Beijing
Computational Science Research Center, Beijing 100193, China
| | - Erli Lu
- Chemistry-School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
upon Tyne, United Kingdom, NE1 7RU
| |
Collapse
|
20
|
Woltornist RA, Collum DB. Ketone Enolization with Sodium Hexamethyldisilazide: Solvent- and Substrate-Dependent E- Z Selectivity and Affiliated Mechanisms. J Am Chem Soc 2021; 143:17452-17464. [PMID: 34643382 PMCID: PMC10042305 DOI: 10.1021/jacs.1c06529] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ketone enolization by sodium hexamethyldisilazide (NaHMDS) shows a marked solvent and substrate dependence. Enolization of 2-methyl-3-pentanone reveals E-Z selectivities in Et3N/toluene (20:1), methyl-t-butyl ether (MTBE, 10:1), N,N,N',N″,N″-pentamethyldiethylenetriamine (PMDTA)/toluene (8:1), TMEDA/toluene (4:1), diglyme (1:1), DME (1:22), and tetrahydrofuran (THF) (1:90). Control experiments show slow or nonexistent stereochemical equilibration in all solvents except THF. Enolate trapping with Me3SiCl/Et3N requires warming to -40 °C whereas Me3SiOTf reacts within seconds. In situ enolate trapping at -78 °C using preformed NaHMDS/Me3SiCl mixtures is effective in Et3N/toluene yet fails in THF by forming (Me3Si)3N. Rate studies show enolization via mono- and disolvated dimers in Et3N/toluene, disolvated dimers in TMEDA, trisolvated monomers in THF/toluene, and free ions with PMDTA. Density functional theory computations explore the selectivities via the E- and Z-based transition structures. Failures of theory-experiment correlations of ionic fragments were considerable even when isodesmic comparisons could have canceled electron correlation errors. Swapping 2-methyl-3-pentanone with a close isostere, 2-methylcyclohexanone, causes a fundamental change in the mechanism to a trisolvated-monomer-based enolization in THF.
Collapse
Affiliation(s)
- Ryan A. Woltornist
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853–1301, United States
| | - David B. Collum
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853–1301, United States
| |
Collapse
|
21
|
Ma Y, Woltornist RA, Algera RF, Collum DB. Reactions of Sodium Diisopropylamide: Liquid-Phase and Solid-Liquid Phase-Transfer Catalysis by N, N, N', N″, N″-Pentamethyldiethylenetriamine. J Am Chem Soc 2021; 143:13370-13381. [PMID: 34375095 PMCID: PMC10042303 DOI: 10.1021/jacs.1c06528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sodium diisopropylamide (NaDA) in N,N-dimethylethylamine (DMEA) and DMEA-hydrocarbon mixtures with added N,N,N',N″,N″-pentamethyldiethylenetriamine (PMDTA) reacts with alkyl halides, epoxides, hydrazones, arenes, alkenes, and allyl ethers. Comparisons of PMDTA with N,N,N',N'-tetramethylethylenediamine (TMEDA) accompanied by detailed rate and computational studies reveal the importance of the trifunctionality and κ2-κ3 hemilability. Rate studies show exclusively monomer-based reactions of 2-bromooctane, cyclooctene oxide, and dimethylresorcinol. Catalysis with 10 mol % PMDTA shows up to >30-fold accelerations (kcat > 300) with no evidence of inhibition over 10 turnovers. Solid-liquid phase-transfer catalysis (SLPTC) is explored as a means to optimize the catalysis as well as explore the merits of heterogeneous reaction conditions.
Collapse
Affiliation(s)
- Yun Ma
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853–1301
| | - Ryan A. Woltornist
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853–1301
| | - Russell F. Algera
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853–1301
| | - David B. Collum
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853–1301
| |
Collapse
|