1
|
Das R, Mondal D, Chatterjee S, Chowdhury C. Palladium-Catalyzed Efficient Synthesis of Benzofuro[3,2-b]Pyrroles and Pyrrolo[3,2-b]Indoles: Access to Nitrilo Substituted Benzofuro[3,2-b]Indoles and Indolo[3,2-b]Indoles Using DDQ. Chemistry 2025:e202500240. [PMID: 40260982 DOI: 10.1002/chem.202500240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 04/24/2025]
Abstract
We report an elegant method for the construction of fused pyrrole rings via palladium-catalyzed reactions of aryl iodides with N-prop-2-ynylated 3-aminobenzofurans/3-aminoindoles leading to the general synthesis of benzofuro[3,2-b]pyrroles/pyrrolo[3,2-b]indoles via 3-(arylidene)-2,3-dihydro intermediates. Exposing the intermediates to 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) delivered benzofuro[3,2-b]indoles (BFIs) and indolo[3,2-b]indoles (IIs) containing vicinal cyano groups. These transformations constitute a rapid intermolecular assembly through several carbon - carbon bond forming reactions, involving a single electron transfer (SET) process in the crucial steps. Photophysical studies of selected products identified promising candidates for future applications.
Collapse
Affiliation(s)
- Raghunath Das
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Debasmita Mondal
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Sarat Chatterjee
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Chinmay Chowdhury
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, India
| |
Collapse
|
2
|
Chaudhary D, Maurya CS, Unnikrishnan U, Kuram MR. HFIP-mediated cascade aminomethylation and intramolecular cyclization of allenamides with N, O-acetals to access tetrahydro-β-carboline derivatives. Chem Commun (Camb) 2025; 61:2981-2984. [PMID: 39846458 DOI: 10.1039/d5cc00154d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The construction of complex molecules under metal-free conditions via multiple bond-forming steps in a cascade manner is highly desirable. Herein, we have developed an HFIP-alone promoted aminomethylation and intramolecular cyclization of allenamides, providing biologically relevant tetrahydro-β-carboline derivatives embedded with an allylic amine functionality. The metal-free protocol provided the desired tetrahydro-β-carboline derivatives under mild conditions. The potential of the protocol is further highlighted by the gram-scale reaction and synthesizing derivatives of biologically important molecules.
Collapse
Affiliation(s)
- Dhananjay Chaudhary
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| | - Chandra Shekhar Maurya
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Urmila Unnikrishnan
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| | - Malleswara Rao Kuram
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
3
|
Chaudhary D, Kuram MR. Hexafluoroisopropanol (HFIP)-Mediated Intramolecular Cyclization of Allenamides To Access C1-Vinyl Tetrahydro-β-carbolines. J Org Chem 2024; 89:11783-11788. [PMID: 39054730 DOI: 10.1021/acs.joc.4c01208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The construction of biologically interesting N-heterocycles under metal-free conditions is a constant goal in industry and academia. Herein, we have developed an hexafluoroisopropanol (HFIP)-mediated intramolecular cyclization of allenamides, providing tetrahydro-β-carboline derivatives embedded with a C1-vinyl functionality. The metal-free protocol provided tetrahydro-β-carboline derivatives atom-efficiently under room temperature with a broad substrate scope in good to excellent yields. The potential impact of the protocol is further highlighted by synthesizing derivatives of biologically important molecules and diversified scaffolds via postsynthetic modifications.
Collapse
Affiliation(s)
- Dhananjay Chaudhary
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Malleswara Rao Kuram
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Chatterjee S, Khatun R, Ali M, Chowdhury C. A solvent controlled regioselective synthesis of 2- and 4-substituted α-carbolines under palladium catalysis. Chem Commun (Camb) 2024; 60:7427-7430. [PMID: 38904121 DOI: 10.1039/d4cc00668b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
A facile method for the chemodivergent synthesis of α-carbolines 1via palladium catalyzed [3+3] annulations of tosyliminoindolines 6 with α, β-unsaturated aldehydes 7 is described. Mechanistically, this cascade reaction proceeds through either a carba-Michael (in DMF) or aza-Michael (in NMA) pathway followed by intramolecular cyclization of the intermediate. A preliminary photo-physical study on selected products is also reported.
Collapse
Affiliation(s)
- Sarat Chatterjee
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata-700032, India.
| | - Rousunara Khatun
- Department of Chemistry, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, India
- Aliah University, 11-A/27, Action Area II, Newtown, Kolkata, India
| | - Mahammad Ali
- Department of Chemistry, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, India
| | - Chinmay Chowdhury
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata-700032, India.
| |
Collapse
|
5
|
He X, Sun S, Kong W, Li M, Li S. Eudistomins Y-Inspired Design and Divergent Optimization of Heteroaryl Ketones for New Antifungal Leads. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11928-11937. [PMID: 38753466 DOI: 10.1021/acs.jafc.3c09874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The discovery of structurally distinct leads is imperative in modern agrochemical science. Inspired by eudistomins Y and the framework-related pharmaceuticals, aryl heteroaryl ketone was drawn as a common model intriguing the design and divergent synthesis of 14 kinds of heteroaryl ketones aligned with their oxime derivatives. Antifungal function-oriented phenotypical screen protruded benzothiazolyl-phenyl oxime 5a as a promising model, and the concomitant modification led to benzothiazolyl oxime 5am (EC50 = 5.17 μM) as a superior lead than fluoxastrobin (EC50 = 7.54 μM) against Sclerotinia sclerotiorum. Scaffold hopping of the phenyl subunit identified benzothiazolyl-pyridyl oxime as a novel antifungal scaffold accompanied by acquiring oxime 5bm with remarkable activity (EC50 = 3.57 μM) against Pyricularia oryzae. Molecular docking showed that candidate 5am could form more hydrogen bonds with the amino acid residues of actin than metrafenone. This compound also demonstrated better curative efficacy than that of fluoxastrobin and metrafenone in controlling the plant disease caused by S. sclerotiorum. These results rationalize the discovery of antifungal candidates based on aryl heteroaryl ketone.
Collapse
Affiliation(s)
- Xiaodan He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shengxin Sun
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wenlong Kong
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Mengyang Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shengkun Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
6
|
Parimi A, Schreckenbach G. Interactions between Metals and Eudistomins of Ascidian Origin: A Computational Study. Inorg Chem 2023; 62:19178-19194. [PMID: 37956254 DOI: 10.1021/acs.inorgchem.3c02140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Ascidians are marine animals that adopt unusual techniques to deter predation. The three main methods are sequestration of unusual metals, high concentrations of sulfuric acid/sulfate ions in tunicate cells, and the presence of eudistomins. In this study, we hypothesize that ascidians sequester metals in their sulfate form, and the complexation of eudistomins with the metals could liberate the sulfate ion. Three representative metal aqua ions were chosen, viz., vanadyl, uranyl, and thorium ions, as well as four simple eudistomins which act as bidentate ligands, viz., eudistomin-W, debromoeudistomin-K, eudistomidin-C, and eudistomidin-B. By designing 7 model reactions, we tested our hypothesis using density functional theory (DFT) methods PBE-D3, BLYP, and B3LYP. The ΔG values of the model reactions provide strong support for our hypothesis. To verify the hypothesis further, we calculated the metal-eudistomin interactions with Be, Zn, and Pb. Based on our results, we suggest that ascidians may not prefer any particular metal. In addition, despite using different DFT functionals, we have observed similar ΔG values for each case. With our work, we have successfully used computational tools in our attempt to understand the unique behavior of ascidians.
Collapse
Affiliation(s)
- Ashutosh Parimi
- Department of Chemistry, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada
| | - Georg Schreckenbach
- Department of Chemistry, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada
| |
Collapse
|
7
|
Marupalli SS, Arockiaraj M, Singh G, Rajeshkumar V. Iodine-Catalyzed Synthesis of Benzo-β-carbolines through Desulfurative Cyclization of 2-(1 H-Indol-3-ylsulfanyl)-phenylamines with Aryl Methyl Ketones. J Org Chem 2023; 88:12783-12791. [PMID: 37584251 DOI: 10.1021/acs.joc.3c00657] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
A novel transition metal-free strategy for the synthesis of benzene-fused β-carboline scaffolds has been developed. This protocol offers a rapid and direct pathway to access the benzene fused β-carboline from 2-(1H-indol-3-ylsulfanyl)-phenylamines and aryl methyl ketones using an efficient catalytic system of I2/DMSO. The present mild protocol proceeds through the sequential reactions of Kornblum oxidation, Pictet-Spengler cyclization, and desulfurization to afford the desired products in excellent yields up to 99%. Moreover, this method has a wide range of substrate tolerance and is operationally simple and applicable in gram-scale synthesis.
Collapse
Affiliation(s)
- Sasi Sree Marupalli
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda 506004, Telangana, India
| | - Mariyaraj Arockiaraj
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda 506004, Telangana, India
| | - Gargi Singh
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda 506004, Telangana, India
| | - Venkatachalam Rajeshkumar
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda 506004, Telangana, India
| |
Collapse
|
8
|
De S, Chowdhury C. Substrate-Controlled Product Divergence in Iron(III)-Catalyzed Reactions of Propargylic Alcohols: Easy Access to Spiro-indenyl 1,4-Benzoxazines and 2-(2,2-Diarylvinyl)quinoxalines. Chemistry 2023; 29:e202203993. [PMID: 36651187 DOI: 10.1002/chem.202203993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
We report herein unprecedented cascade reactions of O-propargyl-N-tosyl-amino phenols with 10 mol% FeCl3 in DCE at room temperature for 0.67-3 h to form spiro-indenyl 1,4-benzoxazines with 38-89 % yield. Replacing the substrates' oxygen atom by a N-tosylimine group followed by treatment with the same catalyst and solvent at 80 °C produced 2-(2,2-diarylvinyl)quinoxalines in 12-20 h with up to 62 % yield. Mechanistic understanding provided an insight into the transformations. The use of simple substrates and an environmentally benign low-cost catalyst, broad substrate scope and tolerance of diverse functional groups makes the methodology inherently attractive.
Collapse
Affiliation(s)
- Sukanya De
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Chinmay Chowdhury
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, India
| |
Collapse
|
9
|
Mondal D, Pramanik S, Chowdhury C. Palladium(0)-Catalyzed Heteroannulations of Allenamides: General Synthesis of δ-Carbolines and Benzofuro[3,2- b]pyridines. Org Lett 2022; 24:8698-8702. [DOI: 10.1021/acs.orglett.2c03625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Debasmita Mondal
- Organic and Medicinal Chemistry Division, CSIR−Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Subhendu Pramanik
- Organic and Medicinal Chemistry Division, CSIR−Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Chinmay Chowdhury
- Organic and Medicinal Chemistry Division, CSIR−Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
10
|
Gérardin B, Traboulsi I, Pal S, Lebunetelle G, Ramondenc Y, Hoarau C, Schneider C. Direct Synthesis of Benzo[ c]carbazoles by Pd-Catalyzed C–H [4 + 2] Annulation of 3-Arylindoles with External 1,3-Dienes. Org Lett 2022; 24:8164-8169. [DOI: 10.1021/acs.orglett.2c03223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Baptiste Gérardin
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, 76 000 Rouen, France
| | - Iman Traboulsi
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, 76 000 Rouen, France
| | - Suman Pal
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, 76 000 Rouen, France
| | | | - Yvan Ramondenc
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, 76 000 Rouen, France
| | - Christophe Hoarau
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, 76 000 Rouen, France
| | - Cédric Schneider
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, 76 000 Rouen, France
| |
Collapse
|
11
|
Chaudhary D, Yadav S, Maurya NK, Kumar D, Ishu K, Kuram MR. Regiodivergent cascade cyclization/alkoxylation of allenamides via N-protecting group driven rearrangement to access indole and indoline derivatives. Chem Commun (Camb) 2022; 58:11300-11303. [PMID: 36124897 DOI: 10.1039/d2cc03174d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mild, palladium-catalyzed domino Heck-cyclization/alkoxylation sequence of aryl halide tethered allenamides is described, providing regiodivergent indole and indoline derivatives controlled by the N-protecting group. This room temperature reaction provided a functionalizable olefinic moiety with broad substrate scope. Preliminary mechanistic studies support the rearrangement of an indoline-derived intermediate to indoles with the N-acetyl allenamides forming free (NH) indoles.
Collapse
Affiliation(s)
- Dhananjay Chaudhary
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| | - Suman Yadav
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| | - Naveen Kumar Maurya
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dharmendra Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Km Ishu
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| | - Malleswara Rao Kuram
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
12
|
Zhang J, Gu M, Bai X. The crystal structure of (1S,3R)-1-(4-isopropylphenyl)-3-(methoxycarbonyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-2-iumchloride monohydrate, C 22H 27ClN 2O 3. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C22H27ClN2O3, orthorhombic, P212121 (no. 19), a = 8.6797(3) Å, b = 9.8809(3) Å, c = 24.7824(8) Å, V = 2125.42(12) Å3, Z = 4, R
gt
(F) = 0.0478, wR
ref
(F
2) = 0.1082, T = 170 K.
Collapse
Affiliation(s)
- Jingxiao Zhang
- College of Food and Medicine , Luoyang Normal University , Luoyang , China
| | - Miao Gu
- College of Food and Medicine , Luoyang Normal University , Luoyang , China
| | - Xinyu Bai
- College of Food and Medicine , Luoyang Normal University , Luoyang , China
| |
Collapse
|