1
|
Ren Y, Zhou Y, Wang KH, Wang J, Huang D, Hu Y. Visible-Light-Induced Trifluoromethyl Radical Addition to Thiocarbonyl of Thioamide Derivatives. J Org Chem 2025; 90:3739-3744. [PMID: 40020186 DOI: 10.1021/acs.joc.5c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
An effective trifluoromethyl radical addition to the thiocarbonyl of thioamide derivatives is described, which produces various trifluoromethylthiolated N-heterocycles such as 6-(trifluoromethylthio)phenanthridine, 2-(trifluoromethylthio)indole, and 2-(trifluoromethylthio)benzothiazole derivatives under visible-light irradiation. The process features advantages such as mild reaction conditions, a cheap and easily available trifluoromethyl source (CF3Br), and green energy, as well as broad substrate scope. The reaction mechanism is investigated in detail, and scale-up experiments are performed.
Collapse
Affiliation(s)
- Yuanyuan Ren
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Yuxiu Zhou
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Ke-Hu Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Junjiao Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Danfeng Huang
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Yulai Hu
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
2
|
Veth L, Windhorst AD, Vugts DJ. Synthesis of 18F-labeled Aryl Trifluoromethyl Sulfones, -Sulfoxides, and -Sulfides for Positron Emission Tomography. Angew Chem Int Ed Engl 2024; 63:e202404278. [PMID: 38656696 DOI: 10.1002/anie.202404278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Positron emission tomography (PET) is becoming increasingly important in nuclear medicine and drug discovery. To date, the development of many potential PET tracers is hampered by the lack of suitable synthetic pathways for their preparation. This is particularly true for the highly desired radiolabeling of compounds bearing [18F]CF3-groups. For instance, S(O)nCF3-groups (n=0, 1, 2) serve as structural motif in a range of biologically active compounds, but their radiosynthesis remains largely unprecedented (for n=1, 2). Herein, we describe general methods for the radiosynthesis of 18F-labeled aryl trifluoromethyl sulfones, -sulfoxides, and -sulfides. All three methods are operationally straightforward, start from widely available precursors, i.e., sulfonyl fluorides and thiophenols, and make use of the recently established [18F]Ruppert-Prakash reagent. Further, the syntheses display good functional group tolerance as demonstrated by the 18F-labeling of more than 40 compounds. The applicability of the new method is demonstrated by the radiolabeling of three bioactive molecules, optionally to be used as PET tracers. In a broader context, this work presents a substantial expansion of the chemical space of radiofluorinated structural motifs to be used for the development of new PET tracers.
Collapse
Affiliation(s)
- Lukas Veth
- Dept. of Radiology & Nuclear Medicine, Amsterdam UMC, location, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Dept. of Radiology & Nuclear Medicine, Amsterdam UMC, location, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Danielle J Vugts
- Dept. of Radiology & Nuclear Medicine, Amsterdam UMC, location, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Lin P, Xie C, Liu T, Yuan X, Luo K, Yang Q, Tan L, Lin Q, Zhou L. Rational construction of reliable fluorescent probes for rapid detection and imaging evaluation of hazardous thiophenol in real-food and biosystems. Food Chem 2024; 432:137264. [PMID: 37643519 DOI: 10.1016/j.foodchem.2023.137264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Thiophenol (PhSH), a highly reactive aromatic thiol, plays an essential role as a common industrial raw material in food, pesticides, pharmaceuticals, and cosmetics. In this work, we designed and constructed two fluorescent probes CM-PhSH and CM-Ratio-PhSH by a rational strategy. Specifically, coumarin fluorophores with excellent optical properties were modified, and olefinic unsaturated bonds served as reaction sites for the detection of PhSH. Based on this, the introduction of the nitro group at specific positions of the CM-PhSH changed the fluorescence emission of the CM-Ratio-PhSH, eventually obtaining a novel ratiometric fluorescent probe CM-Ratio-PhSH for PhSH detection. Surprisingly, these two probes exhibited advantages such as high specificity and low limit of detection (LOD) for CM-PhSH 32.3 nM and CM-Ratio-PhSH 40.2 nM, respectively. Furthermore, subsequent experiments demonstrated CM-PhSH and CM-Ratio-PhSH could be successfully used for highly selective and rapid detection of PhSH in aqueous solutions, live cells, and complex food samples.
Collapse
Affiliation(s)
- Pengxu Lin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Can Xie
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Ting Liu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaomin Yuan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Kun Luo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qiaomei Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Libin Tan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qinlu Lin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
4
|
La-Ongthong K, Chantarojsiri T, Soorukram D, Leowanawat P, Reutrakul V, Kuhakarn C. Electrochemical trifluoromethylation of 2-isocyanobiaryls using CF 3SO 2Na: synthesis of 6-(trifluoromethyl)phenanthridines. Org Biomol Chem 2023; 21:4225-4236. [PMID: 36880879 DOI: 10.1039/d3ob00239j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
An efficient trifluoromethylation of 2-isocyanobiaryls was developed through the constant current electrolysis, employing sodium trifluoromethanesulfinate (CF3SO2Na) as the trifluoromethyl source. The method enabled the syntheses of a series of 6-(trifluoromethyl)phenanthridine derivatives in moderate to high yields under metal- and oxidant-free conditions. A gram-scale synthesis highlights the synthetic versatility of the reported protocol.
Collapse
Affiliation(s)
- Kannika La-Ongthong
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand. .,Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Teera Chantarojsiri
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand. .,Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Darunee Soorukram
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand. .,Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Pawaret Leowanawat
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand. .,Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Vichai Reutrakul
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand. .,Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Chutima Kuhakarn
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand. .,Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| |
Collapse
|
5
|
Mumtaz Y, Liu J, Huang X. Copper-Promoted Trifluoromethylthiolation of Anilines with CF 3SO 2Na. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202203031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
6
|
Shi Y, Wang K, Ding Y, Xie Y. Transition-metal-free electrochemical oxidative C(sp 2)-H trifluoromethylation of aryl aldehyde hydrazones. Org Biomol Chem 2022; 20:9362-9367. [PMID: 36383151 DOI: 10.1039/d2ob01734b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A simple protocol of metal-free C-H trifluoromethylation of hydrazones via electrolysis was developed. This environment-friendly transformation showed high efficiency, good tolerance, and scaled-up functionalization, providing the desired products in moderate to good yields. At the same time, a high yield can be obtained for the substrates either bearing an electron-donating group or an electron-withdrawing group by using different trifluoromethyl reagents. In addition, the radical mechanism was confirmed by the control experiment.
Collapse
Affiliation(s)
- Yuan Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Kai Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yuxin Ding
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China. .,Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China.,Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Hangzhou, 310014, China
| |
Collapse
|
7
|
de Souza AAN, Bartolomeu ADA, Brocksom TJ, Noël T, de Oliveira KT. Direct Synthesis of α-Sulfenylated Ketones under Electrochemical Conditions. J Org Chem 2022; 87:5856-5865. [PMID: 35417160 DOI: 10.1021/acs.joc.2c00147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We investigated the electrochemical sulfenylation reaction in both batch and continuous flow regimes, involving thiophenols/thiols and enol-acetates to yield α-sulfenylated ketones, without using additional oxidants or catalysts. Studies with different electrolytes were also performed, revealing that quaternary ammonium salts are the best mediators for this reaction. Notably, during the study of the reaction scope, a Boc-cysteine proved to be extremely tolerant to our protocol, thus increasing its relevance. The methodology also proved to be scalable in both batch and continuous flow conditions, opening up possibilities for further studies since these relevant functional groups are important moieties in organic synthesis.
Collapse
Affiliation(s)
- Aline A N de Souza
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Aloisio de A Bartolomeu
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Timothy J Brocksom
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Timothy Noël
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UVA), Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Kleber T de Oliveira
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
8
|
Shen GB, Yu HY, Xu Z, Cao W, Liu J, Xie L, Yan M. Theoretical study for evaluating and discovering organic hydride compounds as novel trifluoromethylation reagents. Org Biomol Chem 2022; 20:2831-2842. [PMID: 35294516 DOI: 10.1039/d2ob00056c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Trifluoromethylation reaction is one of the significant and practical organic chemical reactions, and the design and discovery of novel trifluoromethylation reagents have been attracting more and more attention. Trifluoromethyl-substituted organic hydride compounds (XH) have the potential to be novel trifluoromethylation reagents in organic synthesis due to the favorable tendency of XH˙+ releasing ˙CF3 to form stable aromatic structures in terms of thermodynamics. The key elementary step of the trifluoromethylation is the radical cation (XH˙+) generation by catalysis or single-electron activation releasing ˙CF3 to form a stable aromatic structure, which also provides the thermodynamic driving force of the chemical process. In this work, 47 new trifluoromethylation reagent candidates of XHs were designed and calculated for the Gibbs free energy and activation free energy [ΔG‡RD(XH˙+)] of XH˙+ releasing ˙CF3 using the density functional theory (DFT) method, in order to quantitatively measure the reactivity of XHs as trifluoromethylation reagents, and to establish the molecular library as well as reactivity database of novel trifluoromethylation reagents for synthetic chemists. According to the and ΔG‡RD(XH˙+) values, all the XHs can be reasonably divided into 3 classes, including class 1 (excellent trifluoromethylation reagents), class 2 (potential trifluoromethylation reagents) and class 3 (not trifluoromethylation reagents). To our delight, 15 XHs with a 1,4-dihydropyridine structure and 3 XHs with a 3,4-dihydropyrimidin-2-one structure are identified to be novel excellent and potential trifluoromethylation reagents, respectively, according to their reactivity data. The relationship between the structural features, including methylation, heteroatom, substituents, conjugated structure and so on, and the reactivity of XHs as trifluoromethylation reagents are also discussed in this work. The computation results indicate that trifluoromethyl-substituted 1,4-dihydropyridine compounds and 3,4-dihydropyrimidin-2-one analogues could be possible trifluoromethylation reagents in organic synthesis. This work may provide the theoretical basis and references for discovering organic hydride compounds as novel reagents for trifluoromethylation or other alkylation reactions.
Collapse
Affiliation(s)
- Guang-Bin Shen
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Hao-Yun Yu
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Zhihao Xu
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, 276800, P. R. China.
| | - Weilong Cao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, 276800, P. R. China.
| | - Jie Liu
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Li Xie
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Maocai Yan
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, 276800, P. R. China.
| |
Collapse
|
9
|
Bernd J, Werner P, Zeplichal M, Terfort A. Electrochemical O-trifluoromethylation of electron-deficient phenols. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.107165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
10
|
Liu M, Luo ZX, Li T, Xiong DC, Ye XS. Electrochemical Trifluoromethylation of Glycals. J Org Chem 2021; 86:16187-16194. [PMID: 34435785 DOI: 10.1021/acs.joc.1c01318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Carbohydrates play essential roles in various physiological and pathological processes. Trifluoromethylated compounds have wide applications in the field of medicinal chemistry. Herein, we report a practical and efficient trifluoromethylation of glycals by an electrochemical approach using CF3SO2Na as the trifluoromethyl source and MnBr2 as the redox mediator. A variety of trifluoromethylated glycals bearing different protective groups are obtained in 60-90% yields with high regioselectivity. The successful capture of a CF3 radical indicates that a radical mechanism is involved in this reaction.
Collapse
Affiliation(s)
- Miao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhao-Xiang Luo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Tian Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|