1
|
Gisnapp A, Trapp PC, Schwabedissen J, Stammler HG, Reichel M, Leitz D, Krumm B, Karaghiosoff K, Mitzel NW. Fluoromethyl Triflate and Fluoromethyl Fluorosulfonate: Easily Accessible and Powerful Fluoromethylation Reagents. Angew Chem Int Ed Engl 2025; 64:e202420540. [PMID: 39688429 DOI: 10.1002/anie.202420540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
Fluoromethyl triflate (superfluoromethyl, SFM, FH2COSO2CF3) and fluoromethyl fluorosulfonate (magic fluoromethyl, MFM, FH2COSO2F) are two easily synthesized, highly effective and non-ozone depleting fluoromethylation reagents. They are analogous to the well-known and widely used methylation reagents H3COSO2CF3 and H3COSO2F. Both SFM and MFM have been fully characterized by multinuclear NMR spectroscopy (1H, 13C, 17O, 19F, 33S). Their structures have been determined in the solid state on in situ grown crystals by X-ray diffraction and in the gas phase by electron diffraction. The fluoromethylation efficiency of SFM and MFM was shown by reactions with chalcogen nucleophiles of differing nucleophilicity. All fluoromethylated products were isolated as pure compounds and characterized by NMR and vibrational spectroscopy, as well as in some cases by single crystal X-ray diffraction.
Collapse
Affiliation(s)
- Alexander Gisnapp
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13(D), 81377, München, Germany
| | - Pia C Trapp
- Lehrstuhl für Anorganische Chemie und Strukturchemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Jan Schwabedissen
- Lehrstuhl für Anorganische Chemie und Strukturchemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Lehrstuhl für Anorganische Chemie und Strukturchemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Marco Reichel
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13(D), 81377, München, Germany
| | - Dominik Leitz
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13(D), 81377, München, Germany
| | - Burkhard Krumm
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13(D), 81377, München, Germany
| | - Konstantin Karaghiosoff
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13(D), 81377, München, Germany
| | - Norbert W Mitzel
- Lehrstuhl für Anorganische Chemie und Strukturchemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
2
|
Wu Y, Zhu Q, Xu H, Yang J, Wang Y, Wang C, Hu Z, Zhang Z. Cu-UiO-66 Catalyzed Synthesis of Imines via Acceptorless Dehydrogenative Coupling of Alcohols and Amines. Chem Asian J 2025; 20:e202400984. [PMID: 39495213 DOI: 10.1002/asia.202400984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/21/2024] [Accepted: 11/03/2024] [Indexed: 11/05/2024]
Abstract
Herein, the Cu-UiO-66 catalyst was developed for acceptorless dehydrogenative coupling (ADC) between alcohols and amines to produce imines. The Cu-UiO-66 catalyst was synthesized by installing Cu2+ onto Zr-oxo clusters in UiO-66, and the catalyst efficiently catalyzes the ADC reaction under mild and environmentally friendly conditions with excellent selectivity. Mechanistic studies reveal that the O2⋅- radicals and porosity of formed in Cu-UiO-66 participate cooperatively during the catalytic cycle. Meanwhile, the only by-product of the system is environmentally benign water. Cycling tests and hot filtration tests showed that the Cu-UiO-66 catalyst exhibited excellent stability and catalytic activity during the reaction. Importantly, the Cu-UiO-66 catalyst might provide a promising strategy for the ADC reaction between alcohols and amines to produce imines.
Collapse
Affiliation(s)
- Yujuan Wu
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Qiulin Zhu
- School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Hongyang Xu
- School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Jiawei Yang
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Yongfei Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
- School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Cuiping Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Zhizhi Hu
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| |
Collapse
|
3
|
Senatore R, Malik M, Pace V. Fluoroiodomethane: A CH2F‐Moiety Delivering Agent Suitable for Nucleophilic‐, Electrophilic‐ and Radical‐Harnessed Operations. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Colella M, Musci P, Andresini M, Spennacchio M, Degennaro L, Luisi R. The synthetic versatility of fluoroiodomethane: recent applications as monofluoromethylation platform. Org Biomol Chem 2022; 20:4669-4680. [PMID: 35587647 DOI: 10.1039/d2ob00670g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In recent years, fluoroiodomethane (CH2FI) has emerged as an easy-to-handle, non-ozone depleting agent and readily available platform for monofluoromethylation strategies. Recent applications in nucleophilic substitutions, lithiation reactions, transition-metal catalyzed transformations, radical processes, and 18F-radiolabelling chemistry showcase the potential of this reagent for the preparation of organofluorine compounds. In this minireview, we provide an update to the field covering the recent relevant literature on the use of CH2FI.
Collapse
Affiliation(s)
- Marco Colella
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro" Via E. Orabona 4, 70125 Bari, Italy.
| | - Pantaleo Musci
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro" Via E. Orabona 4, 70125 Bari, Italy.
| | - Michael Andresini
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro" Via E. Orabona 4, 70125 Bari, Italy.
| | - Mauro Spennacchio
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro" Via E. Orabona 4, 70125 Bari, Italy.
| | - Leonardo Degennaro
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro" Via E. Orabona 4, 70125 Bari, Italy.
| | - Renzo Luisi
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro" Via E. Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
5
|
Peng J, Liao C, Bauer C, Seebeck FP. Fluorinated
S
‐Adenosylmethionine as a Reagent for Enzyme‐Catalyzed Fluoromethylation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jiaming Peng
- Department of Chemistry University of Basel Mattenstrasse 24a 4002 Basel Switzerland
| | - Cangsong Liao
- Department of Chemistry University of Basel Mattenstrasse 24a 4002 Basel Switzerland
| | - Carsten Bauer
- Department of Chemistry University of Basel Mattenstrasse 24a 4002 Basel Switzerland
| | - Florian P. Seebeck
- Department of Chemistry University of Basel Mattenstrasse 24a 4002 Basel Switzerland
| |
Collapse
|
6
|
Peng J, Liao C, Bauer C, Seebeck FP. Fluorinated S-Adenosylmethionine as a Reagent for Enzyme-Catalyzed Fluoromethylation. Angew Chem Int Ed Engl 2021; 60:27178-27183. [PMID: 34597444 DOI: 10.1002/anie.202108802] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Indexed: 01/15/2023]
Abstract
Strategic replacement of protons with fluorine atoms or functional groups with fluorine-containing fragments has proven a powerful strategy to optimize the activity of therapeutic compounds. For this reason, the synthetic chemistry of organofluorides has been the subject of intense development and innovation for many years. By comparison, the literature on fluorine biocatalysis still makes for a slim chapter. Herein we introduce S-adenosylmethionine (SAM) dependent methyltransferases as a new tool for the production of fluorinated compounds. We demonstrate the ability of halide methyltransferases to form fluorinated SAM (S-adenosyl-S-(fluoromethyl)-L-homocysteine) from S-adenosylhomocysteine and fluoromethyliodide. Fluorinated SAM (F-SAM) is too unstable for isolation, but is accepted as a substrate by C-, N- and O-specific methyltransferases for enzyme-catalyzed fluoromethylation of small molecules.
Collapse
Affiliation(s)
- Jiaming Peng
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Cangsong Liao
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Carsten Bauer
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Florian P Seebeck
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| |
Collapse
|