1
|
Andrews KG. Beyond symmetric self-assembly and effective molarity: unlocking functional enzyme mimics with robust organic cages. Beilstein J Org Chem 2025; 21:421-443. [PMID: 40041197 PMCID: PMC11878132 DOI: 10.3762/bjoc.21.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/05/2025] [Indexed: 03/06/2025] Open
Abstract
The bespoke environments in enzyme active sites can selectively accelerate chemical reactions by as much as 1019. Macromolecular and supramolecular chemists have been inspired to understand and mimic these accelerations and selectivities for applications in catalysis for sustainable synthesis. Over the past 60+ years, mimicry strategies have evolved with changing interests, understanding, and synthetic advances but, ubiquitously, research has focused on use of a molecular "cavity". The activities of different cavities vary with the subset of features available to a particular cavity type. Unsurprisingly, without synthetic access to mimics able to encompass more/all of the functional features of enzyme active sites, examples of cavity-catalyzed processes demonstrating enzyme-like rate accelerations remain rare. This perspective will briefly highlight some of the key advances in traditional cavity catalysis, by cavity type, in order to contextualize the recent development of robust organic cage catalysts, which can exploit stability, functionality, and reduced symmetry to enable promising catalytic modes.
Collapse
Affiliation(s)
- Keith G Andrews
- Department of Chemistry, Durham University, Lower Mount Joy, South Rd, Durham, DH1 3LE, UK
| |
Collapse
|
2
|
Montà-González G, Martínez-Máñez R, Martí-Centelles V. Synthesis of a Pd 2L 4 Hydrazone Molecular Cage Through Multiple Reaction Pathways. Int J Mol Sci 2024; 25:11861. [PMID: 39595930 PMCID: PMC11593401 DOI: 10.3390/ijms252211861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Molecular cages are preorganized molecules with a central cavity, typically formed through the reaction of their building blocks through chemical bonds. This requires, in most cases, forming and breaking reversible bonds during the cage formation reaction pathway for error correction to drive the reaction to the cage product. In this work, we focus on both Pd-ligand and hydrazone bonds implemented in the structure of a Pd2L4 hydrazone molecular cage. As the cage contains two different types of reversible bonds, we envisaged a cage formation comparative study by performing the synthesis of the cage through three different reaction pathways involving the formation of Pd-ligand bonds, hydrazone bonds, or a combination of both. The three reaction pathways produce the cage with yields ranging from 73% to 79%. Despite the complexity of the reaction, the cage is formed in a high yield, even for the reaction pathway that involves the formation of 16 bonds. This research paves the way for more sophisticated cage designs through complex reaction pathways.
Collapse
Affiliation(s)
- Giovanni Montà-González
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain;
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain;
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe (IISLAFE), Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Avenida Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - Vicente Martí-Centelles
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain;
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
3
|
Yang M, Su K, Yuan D. Construction of stable porous organic cages: from the perspective of chemical bonds. Chem Commun (Camb) 2024; 60:10476-10487. [PMID: 39225058 DOI: 10.1039/d4cc04150j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Porous organic cages (POCs) are constructed from purely organic synthons by covalent linkages with intrinsic cavities and have shown potential applications in many areas. However, the majority of POC synthesis methods reported thus far have relied on dynamically reversible imine linkages, which can be metastable and unstable under humid or harsh chemical conditions. This instability significantly hampers their research prospects and practical applications. Consequently, strategies to enhance the chemical stability of POCs by modifying imine bonds and developing robust covalent linkages are imperative for realizing the full potential of these materials. In this review, we aim to highlight recent advancements in synthesizing chemical-stable POCs through these approaches and their associated applications. Additionally, we propose further strategies for creating stable POCs and discuss future opportunities for practical applications.
Collapse
Affiliation(s)
- Miao Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Kongzhao Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Wu G, Zhuang SY, Xing J, Lin Q, Li ZT, Zhang DW. Modular Strategy for Constructing para-Cage[ n]arenes, meta-Cage[ n]arenes, and meta-Bimacrocyclic-Arenes. Org Lett 2024; 26:2007-2012. [PMID: 38442042 DOI: 10.1021/acs.orglett.4c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Here, we present a versatile modular strategy for crafting novel covalent organic cages (para-cage[n]arenes and meta-cage[n]arenes, n = 3,4) and bimacrocycles (meta-bimacrocyclic-arenes) with stable backbones and modifiable rims. These structures can be synthesized from commercially available aromatic multialdehydes in a three-step process: quantitative bromination, Suzuki-Miyaura reaction (yielding over 60%), and a rapid one-pot Friedel-Crafts reaction with paraformaldehyde. Notably, the cage[n]arenes exhibit a well-defined prismatic shape, and the bimacrocyclic-arenes display both dimeric and monomeric configurations.
Collapse
Affiliation(s)
- Gang Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Sheng-Yi Zhuang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Jiabin Xing
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Qihan Lin
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Zhan-Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| |
Collapse
|
5
|
Mei S, Ou Q, Tang X, Xu JF, Zhang X. Stabilization of Carbocation Intermediate by Cucurbit[7]uril Enables High Photolysis Efficiency. Org Lett 2023; 25:5291-5296. [PMID: 37428144 DOI: 10.1021/acs.orglett.3c01854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
A cucurbit[7]uril-based host-guest strategy is employed to enhance the efficiency of photolysis reactions that release caged molecules from photoremovable protecting groups. The photolysis of benzyl acetate follows a heterolytic bond cleavage mechanism, thereby leading to the formation of a contact ion pair as the key reactive intermediate. The Gibbs free energy of the contact ion pair is lowered by 3.06 kcal/mol through the stabilization of cucurbit[7]uril, as revealed by DFT calculations, which results in a 40-fold increase in the quantum yield of the photolysis reaction. This methodology is also applicable to the chloride leaving group and the diphenyl photoremovable protecting group. We anticipate that this research presents a novel strategy to improve reactions involving active cationics, thereby enriching the field of supramolecular catalysis.
Collapse
Affiliation(s)
- Shan Mei
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qi Ou
- AI for Science Institute, Beijing 100080, China
- DP Technology, Beijing 100080, China
| | - Xingchen Tang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiang-Fei Xu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xi Zhang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Self-Assembly of a Purely Organic Bowl in Water via Acylhydrazone Formation. Molecules 2023; 28:molecules28030976. [PMID: 36770651 PMCID: PMC9921396 DOI: 10.3390/molecules28030976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
A bowl-shaped molecule can be self-assembled by condensing a triscationic hexaaldehyde compound and three equiv. of a dihydrazide linkers in pure water. The molecular bowl is thus composed of a triscationic π-electron deficient platform, as well as a hexagonal rim that contains six acylhydrazone functions. When the counteranions are chloride, the solid-state structure reveals that this molecular bowl undergoes dimerization via N-H···Cl hydrogen bonds, forming a cage-like dimer with a huge inner cavity. This molecular bowl can employ its cavity to accommodate a hydrophobic guest, namely 1-adamantanecarboxylic acid in aqueous media.
Collapse
|
7
|
Yavari I, Shaabanzadeh S. Benzylic C(sp 3)-H Bonds Play the Dual Role of Starting Material and Oxidation Inhibitor for Hydrazides in the Electrochemical Synthesis of Hydrazones. J Org Chem 2022; 87:15077-15085. [PMID: 36347012 DOI: 10.1021/acs.joc.2c01574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The electrooxidation of benzylic C(sp3)-H bonds to produce hydrazones as an alternate for conventional pathways has an enormous dignity. Under the aegis of electricity, instead of hazardous metal catalysts and external oxidants, we unveil an electrochemical process for electrooxidation of various benzylic C(sp3)-H bonds in aqueous media in all pH ranges that subsequently produce hydrazones with further reactions. This electrooxidative reaction strategy provides an acceptable condition for synthesizing hydrazones with various functional groups in good efficiency and amenable to gram-scale synthesis. The electrochemical oxidation condition proves an excellent level of compatibility with super cheap electrolyte NaCl for the oxidation of benzylic C(sp3)-H position despite the highly oxidizable hydrazide group remaining intact in the reaction.
Collapse
Affiliation(s)
- Issa Yavari
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran 1463694571, Iran
| | - Sina Shaabanzadeh
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran 1463694571, Iran
| |
Collapse
|
8
|
Chakraborty D, Mukherjee PS. Recent trends in organic cage synthesis: push towards water-soluble organic cages. Chem Commun (Camb) 2022; 58:5558-5573. [PMID: 35420101 DOI: 10.1039/d2cc01014c] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Research on organic cages has blossomed over the past few years into a mature field of study which can contribute to solving some of the challenging problems. In this review we aim to showcase the recent trends in synthesis of organic cages including a brief discussion on their use in catalysis, gas sorption, host-guest chemistry and energy transfer. Among the organic cages, water-soluble analogues are a special class of compounds which have gained renewed attention in recent times. Due to their advantage of being compatible with water, such cages have the potential of showing biomimetic activities and can find use in drug delivery and also as hosts for catalysis in aqueous medium. Hence, the synthetic strategies for the formation of water-soluble organic cages shall be discussed along with their potential applications.
Collapse
Affiliation(s)
- Debsena Chakraborty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India.
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India.
| |
Collapse
|
9
|
Zong Y, Xu YY, Wu Y, Liu Y, Li Q, Lin F, Yu SB, Wang H, Zhou W, Sun XW, Zhang DW, Li ZT. Porous dynamic covalent polymers as promising reversal agents for heparin anticoagulants. J Mater Chem B 2022; 10:3268-3276. [PMID: 35357392 DOI: 10.1039/d2tb00174h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heparins are natural and partially degraded polyelectrolytes that consist of sulfated polysaccharide backbones. However, as clinically used anticoagulants, heparins are associated with clinical bleeding risks and thus require rapid neutralization. Protamine sulfate is the only clinically approved antidote for unfractionated heparin (UFH), which not only may cause severe adverse reactions in patients, but also is only partially effective against low molecular weight heparins (LMWHs). We here present the facile synthesis of four porous multicationic dynamic covalent polymers (DCPs) from the condensation of tritopic aldehyde and acylhydrazine precursors. We show that, as new water-soluble polymeric antidotes, the new DCPs can effectively include both UFH and LMWHs and thus reverse their anticoagulating activity, which is confirmed by the activated partial thromboplastin time and thromboelastographic assays as well as mouse tail transection assay (bleeding model). The neutralization activities of two of the DCPs were found to be overall superior to that of protamine and have wider concentration windows and good biocompatibility. This pore-inclusion neutralization strategy paves the way for the development of water-soluble polymers as universal heparin binding agents.
Collapse
Affiliation(s)
- Yang Zong
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Yan-Yan Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Yan Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Yamin Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Qian Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Furong Lin
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Shang-Bo Yu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Hui Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Wei Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Xing-Wen Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Zhan-Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| |
Collapse
|
10
|
Xu W, Jiao Y, Tang B, Xu JF, Zhang X. Cucurbit[7]uril-Modulated H/D Exchange of α-Carbonyl Hydrogen: Deceleration in Alkali and Acceleration in Acid Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:541-546. [PMID: 34930007 DOI: 10.1021/acs.langmuir.1c02951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Supramolecular catalysis based on host-guest interactions has aroused much attention in past decades. Among the various strategies, modulation of the reactivity of key intermediates is an effective strategy to achieve high-efficiency supramolecular catalysis. Here, we report that by utilizing the host-guest interaction of cucurbit[7]uril (CB[7]), the reactivity of anionic enolate and cationic oxonium, the intermediates of H/D exchange of the α-carbonyl hydrogen in alkali and acid conditions, respectively, could be modulated effectively. On one hand, in alkaline conditions, both the electrostatic effect and the steric hindrance effect of CB[7] disfavored formation of the enolate anion intermediate. On the other hand, in acidic conditions, the oxonium was stabilized and the solvent effect was weakened by the electrostatic effect of CB[7]. As a result, the H/D exchange of 1-(4-acetylphenyl)-N,N,N-trimethylmethanaminium bromide is decelerated in alkaline and accelerated in acidic conditions. It is promising that the highly polar portals of CB[n] molecules together with their well-defined host-guest chemistry may be applied to modulate the reactivity of other kinds of ionic intermediates in an effective and convenient way, thus enriching the toolkit of supramolecular catalysis.
Collapse
Affiliation(s)
- Weiquan Xu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yang Jiao
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bohan Tang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiang-Fei Xu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xi Zhang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Mobili R, Preda G, La Cognata S, Toma L, Pasini D, Amendola V. Chiroptical sensing of perrhenate in aqueous media by a chiral organic cage. Chem Commun (Camb) 2022; 58:3897-3900. [DOI: 10.1039/d2cc00612j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A chiral cage is proposed as an effective chiroptical sensor for perrhenate (surrogate for 99TcO4-) in water, fruit juice and artificial urine medium. The key mechanism for the chiroptical sensing...
Collapse
|
12
|
Fuller RO, Taylor MR, Duggin M, Bissember AC, Canty AJ, Judd MM, Cox N, Moggach SA, Turner GF. Enhanced synthesis of oxo-verdazyl radicals bearing sterically-and electronically-diverse C3-substituents. Org Biomol Chem 2021; 19:10120-10138. [PMID: 34757372 DOI: 10.1039/d1ob01946e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthetic viability of the hydrazine- and phosgene-free synthesis of 1,5-dimethyl oxo-verdazyl radicals has been improved via a detailed study investigating the influence of the aryl substituent on tetrazinanone ring formation. Although it is well established that functionalisation at the C3 position of the tetrazinanone ring does not influence the nature of the radical, it is crucial in applications development. The synthetic route involves a 4-step sequence: Schiff base condensation of a carbohydrazide with an arylaldehyde, alkylation, ring closure then subsequent oxidation to the radical. We found that the presence of strong electron-donating substituents and electron rich heterocycles, result in a significant reduction in yield during both the alkylation and ring closure steps. This can, in part, be alleviated by milder alkylation conditions and further substitution of the aryl group. In comparison, more facile formation of the tetrazine ring was observed with examples containing electron-withdrawing groups and with meta- or para-substitution. Density functional theory suggests that the ring closure proceeds via the formation of an ion pair. Electron paramagnetic resonance spectroscopy provides insight into the precise electronic structure of the radical with small variations in hyperfine coupling constants revealing subtle differences.
Collapse
Affiliation(s)
- Rebecca O Fuller
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, Australia.
| | - Madeleine R Taylor
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, Australia.
| | - Margot Duggin
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, Australia.
| | - Alex C Bissember
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, Australia.
| | - Allan J Canty
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, Australia.
| | - Martyna M Judd
- Research School of Chemistry, The Australia National University, Australian Capital Territory, Australia
| | - Nicholas Cox
- Research School of Chemistry, The Australia National University, Australian Capital Territory, Australia
| | - Stephen A Moggach
- School of Molecular Sciences - Chemistry, The University of Western Australia, Crawley, Western Australia, Australia
| | - Gemma F Turner
- School of Molecular Sciences - Chemistry, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|