1
|
Ghafuri H, Gholipour F, Hanifehnejad P, Bijari F. Cherry tree gum-derived silver/microporous carbon: Reduction of nitroaromatic compounds by microwave-assisted reaction. Heliyon 2025; 11:e41961. [PMID: 39931478 PMCID: PMC11808728 DOI: 10.1016/j.heliyon.2025.e41961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/28/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
In this study, a silver/microporous carbon (Ag@MC) nanocomposite was synthesized using cherry tree gum as a carbon precursor via a hydrothermal method. The catalytic performance of Ag@MC was evaluated for the reduction of nitroaromatic derivatives under solvent-free and microwave-assisted conditions, achieving yields higher than 90 % in just 5 min, significantly shorter than many comparable studies. Comprehensive characterization confirmed the structure and stability of Ag@MC, with silver nanoparticles effectively trapped within its microporous matrix. The nanocomposite demonstrated excellent reusability, maintaining high catalytic activity over six cycles, thereby adhering to green chemistry principles. These findings highlight the potential of using sustainable natural polymers for high-efficiency catalytic applications.
Collapse
Affiliation(s)
- Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Fariba Gholipour
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Peyman Hanifehnejad
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Fatemeh Bijari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| |
Collapse
|
2
|
Romero-Soto CA, Iglesias AL, Velázquez-Ham AF, Camarena-Díaz JP, Correa-Ayala E, Gomez-Lopez JL, Chávez D, Ochoa-Terán A, Aguirre G, Rheingold AL, Grotjahn DB, Parra-Hake M, Miranda-Soto V. Ruthenium complexes with triazenide ligands bearing an N-heterocyclic moiety, and their catalytic properties in the reduction of nitroarenes. RSC Adv 2024; 14:24019-24030. [PMID: 39086523 PMCID: PMC11290092 DOI: 10.1039/d4ra04813j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
A series of ruthenium complexes of formulae [RuCl(triazenide)(p-cymene)] have been synthesized using as ligand a triazenide monofunctionalized with an N-heterocyclic moiety. Nuclear magnetic resonance, high resolution mass spectrometry and X-ray diffraction were used to characterize the triazenide ligands and their complexes. In addition, these ruthenium complexes catalyzed the reduction of nitrobenzene to aniline in the presence of sodium borohydride and ethanol as solvent at room temperature. Notably, complex 5 was especially active in the reduction of nitroarenes substituted at the aromatic ring with electron-withdrawing or electron-donating fuctional groups affording the desired arylamines in good to excellent yields (80-100%). The role of the N-heterocyclic moiety on catalysis was explored.
Collapse
Affiliation(s)
- Christian A Romero-Soto
- Tecnológico Nacional de México/Instituto Tecnológico de Tijuana/Centro de Graduados e Investigación en Química Blvd. Alberto Limón Padilla S/N 22454 Tijuana BC Mexico
| | - Ana L Iglesias
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California Mexico
| | - Amor F Velázquez-Ham
- Tecnológico Nacional de México/Instituto Tecnológico de Tijuana/Centro de Graduados e Investigación en Química Blvd. Alberto Limón Padilla S/N 22454 Tijuana BC Mexico
| | - Juan P Camarena-Díaz
- Tecnológico Nacional de México/Instituto Tecnológico de Tijuana/Centro de Graduados e Investigación en Química Blvd. Alberto Limón Padilla S/N 22454 Tijuana BC Mexico
| | - Erick Correa-Ayala
- Tecnológico Nacional de México/Instituto Tecnológico de Tijuana/Centro de Graduados e Investigación en Química Blvd. Alberto Limón Padilla S/N 22454 Tijuana BC Mexico
| | - Jessica L Gomez-Lopez
- Tecnológico Nacional de México/Instituto Tecnológico de Tijuana/Centro de Graduados e Investigación en Química Blvd. Alberto Limón Padilla S/N 22454 Tijuana BC Mexico
| | - Daniel Chávez
- Tecnológico Nacional de México/Instituto Tecnológico de Tijuana/Centro de Graduados e Investigación en Química Blvd. Alberto Limón Padilla S/N 22454 Tijuana BC Mexico
| | - Adrián Ochoa-Terán
- Tecnológico Nacional de México/Instituto Tecnológico de Tijuana/Centro de Graduados e Investigación en Química Blvd. Alberto Limón Padilla S/N 22454 Tijuana BC Mexico
| | - Gerardo Aguirre
- Tecnológico Nacional de México/Instituto Tecnológico de Tijuana/Centro de Graduados e Investigación en Química Blvd. Alberto Limón Padilla S/N 22454 Tijuana BC Mexico
| | - Arnold L Rheingold
- Department of Chemistry and Biochemistry, University of California at San Diego CA 92093 USA
| | - Douglas B Grotjahn
- Department of Chemistry and Biochemistry, San Diego State University CA 92182 USA
| | - Miguel Parra-Hake
- Tecnológico Nacional de México/Instituto Tecnológico de Tijuana/Centro de Graduados e Investigación en Química Blvd. Alberto Limón Padilla S/N 22454 Tijuana BC Mexico
| | - Valentín Miranda-Soto
- Tecnológico Nacional de México/Instituto Tecnológico de Tijuana/Centro de Graduados e Investigación en Química Blvd. Alberto Limón Padilla S/N 22454 Tijuana BC Mexico
| |
Collapse
|
3
|
Gioftsidou DK, Kallitsakis MG, Kavaratzi K, Hatzidimitriou AG, Terzidis MA, Lykakis IN, Angaridis PA. Synergy of redox-activity and hemilability in thioamidato cobalt(III) complexes for the chemoselective reduction of nitroarenes to anilines: catalytic and mechanistic investigation. Dalton Trans 2024; 53:1469-1481. [PMID: 38126463 DOI: 10.1039/d3dt02923a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Reduction of nitro-compounds to amines is one of the most often employed and challenging catalytic processes in the fine and bulk chemical industry. Herein, we present two series of mononuclear homoleptic and heteroleptic Co(III) complexes, i.e., [Co(LNS)3] and [Co(LNS)2L1L2]x+, respectively (x = 0 or 1, LNS = pyrimidine- or pyridine-thioamidato, L1/L2 = thioamidato, phosphine or pyridine), which successfully catalyze the transformation of nitroarenes to anilines by methylhydrazine. The catalytic reaction can be accomplished for a range of electronically and sterically diverse nitroarenes, using mild experimental conditions and low catalyst loadings, resulting in the corresponding anilines in high yields, with high chemoselectivity, and no side-products. Electronic and steric properties of the ligands play pivotal role in the catalytic efficacy of the respective complexes. In particular, complexes bearing ligands of high hemilability/lability and being capable of stabilizing lower metal oxidation-states exhibit the highest catalytic activity. Mechanistic investigations suggest the participation of the Co(III) complexes in two parallel reaction pathways: (a) coordination-induced activation of methylhydrazine and (b) reduction of nitroarenes to anilines by methylhydrazine, through the formation of Co(I) and Co-hydride intermediates.
Collapse
Affiliation(s)
- Dimitra K Gioftsidou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Michael G Kallitsakis
- Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Konstantina Kavaratzi
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Antonios G Hatzidimitriou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Michael A Terzidis
- Laboratory of Chemical Biology, Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos, 57400 Thessaloniki, Greece
| | - Ioannis N Lykakis
- Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Panagiotis A Angaridis
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
4
|
Moradi Z, Ghorbani-Choghamarani A. Fe 3O 4@SiO 2@KIT-6@2-ATP@Cu I as a catalyst for hydration of benzonitriles and reduction of nitroarenes. Sci Rep 2023; 13:7645. [PMID: 37169905 PMCID: PMC10175259 DOI: 10.1038/s41598-023-34409-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/29/2023] [Indexed: 05/13/2023] Open
Abstract
In this paper, a new type of magnetic mesoporous material (Fe3O4@SiO2@KIT-6@2-ATP@CuI) was designed and synthesized and its application in the synthesis of amides and anilines was investigated. The structure of Fe3O4@SiO2@KIT-6@2-ATP@CuI was characterized and identified using FTIR, SEM, XRD, TGA, BET, VSM, and ICP techniques. An external magnet can easily remove the synthesized catalyst from the reaction medium, and be reused in several consequence runs.
Collapse
Affiliation(s)
- Zahra Moradi
- Department of Chemistry, Faculty of Sciences, Ilam University, P.O. Box 69315516, Ilam, Iran
| | - Arash Ghorbani-Choghamarani
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 6517838683, Hamedan, Iran.
| |
Collapse
|
5
|
Tsymliakov MD, Maksutova AI, Bezsonova EN, Zakharova DV, Grishin YK, Tafeenko VA, Sosonyuk SE, Lozinskaya NA. Sodium dithionite in the regioselective reduction of the ortho-positioned nitro group in 1-R-2,4-dinitrobenzenes. MENDELEEV COMMUNICATIONS 2023. [DOI: 10.1016/j.mencom.2023.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
6
|
Gholinejad M, Khezri R, Nayeri S, Vishnuraj R, Pullithadathil B. Gold nanoparticles supported on NiO and CuO: The synergistic effect toward enhanced reduction of nitroarenes and A3-coupling reaction. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
A Reusable FeCl3∙6H2O/Cationic 2,2′-Bipyridyl Catalytic System for Reduction of Nitroarenes in Water. Catalysts 2022. [DOI: 10.3390/catal12080924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The association of a commercially-available iron (III) chloride hexahydrate (FeCl3∙6H2O) with cationic 2,2′-bipyridyl in water was proven to be an operationally simple and reusable catalytic system for the highly-selective reduction of nitroarenes to anilines. This procedure was conducted under air using 1–2 mol% of catalyst in the presence of nitroarenes and 4 equiv of hydrazine monohydrate (H2NNH2∙H2O) in neat water at 100 °C for 12 h, and provided high to excellent yields of aniline derivatives. After separation of the aqueous catalytic system from the organic product, the residual aqueous solution could be applied for subsequent reuse, without any catalyst retreatment or regeneration, for several runs with only a slight decrease in activity, proving this process eco-friendly.
Collapse
|
8
|
Ban Y, Wang Y, Li H, Wang Y, Li D, Yang J. Thioamide directed iridium(I)-catalyzed C-H arylation of ferrocenes with aryl boronic acids. Org Biomol Chem 2022; 20:5759-5763. [PMID: 35801428 DOI: 10.1039/d2ob00863g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first Ir(I)-catalyzed thioamide-assisted C-H arylation of ferrocenes with aryl boronic acids under base-free mild reaction conditions in the presence of Ag2CO3 as an oxidant with eco-friendly 2-MeTHF as a solvent was developed. This reaction has a wide range of substrates (37 examples) and functional group tolerance (18-94% yields), and provides promising access to aryl thioamide-ferrocene compounds with good yields and regioselectivity.
Collapse
Affiliation(s)
- Yan Ban
- School of Chemistry and Chemical Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, People's Republic of China
| | - Yingxin Wang
- School of Chemistry and Chemical Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, People's Republic of China
| | - Hao Li
- School of Chemistry and Chemical Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, People's Republic of China
| | - Yan Wang
- School of Chemistry and Chemical Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, People's Republic of China
| | - Dianjun Li
- School of Chemistry and Chemical Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, People's Republic of China.,State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, PR China.
| | - Jinhui Yang
- School of Chemistry and Chemical Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, People's Republic of China.,State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, PR China.
| |
Collapse
|
9
|
Grieco G, Blacque O. Microwave‐assisted reduction of aromatic nitro compounds with novel oxo‐rhenium complexes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gabriele Grieco
- Department of Chemistry University of Zurich Irchel Zurich Switzerland
| | - Olivier Blacque
- Department of Chemistry University of Zurich Irchel Zurich Switzerland
| |
Collapse
|