1
|
González‐Rodríguez J, González‐Granda S, Lavandera I, Gotor‐Fernández V, Mangas‐Sánchez J. L-Cysteine-Catalysed Hydration of Activated Alkynes. Angew Chem Int Ed Engl 2025; 64:e202414046. [PMID: 39344480 PMCID: PMC11720403 DOI: 10.1002/anie.202414046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024]
Abstract
Hydration reactions consist of the introduction of a molecule of water into a chemical compound and are particularly useful to transform alkynes into carbonyls, which are strategic intermediates in the synthesis of a plethora of compounds. Herein we demonstrate that L-cysteine can catalyse the hydration of activated alkynes in a very effective and fully regioselective manner to access important building blocks in synthetic chemistry such as β-ketosulfones, amides and esters, in aqueous media. The mild reaction conditions facilitated the integration with enzyme catalysis to access chiral β-hydroxy sulfones from the corresponding alkynes in a one-pot cascade process in good yields and excellent enantiomeric ratios. These findings pave the way towards establishing a general method for metal-free, cost-effective, and more sustainable alkyne hydration processes.
Collapse
Affiliation(s)
- Jorge González‐Rodríguez
- IUQOEM – Department of Organic and Inorganic ChemistrySchool of ChemistryUniversity of OviedoJulián Clavería 833006OviedoSpain
- Current address: Institute of Applied Synthetic ChemistryVienna University of TechnologyGetreidemarkt 9/163-OC1060WienAustria
| | - Sergio González‐Granda
- IUQOEM – Department of Organic and Inorganic ChemistrySchool of ChemistryUniversity of OviedoJulián Clavería 833006OviedoSpain
- Current address: Department of ChemistryUniversity of Michigan930 N University AveAnn ArborMI-48109USA
| | - Iván Lavandera
- IUQOEM – Department of Organic and Inorganic ChemistrySchool of ChemistryUniversity of OviedoJulián Clavería 833006OviedoSpain
| | - Vicente Gotor‐Fernández
- IUQOEM – Department of Organic and Inorganic ChemistrySchool of ChemistryUniversity of OviedoJulián Clavería 833006OviedoSpain
| | - Juan Mangas‐Sánchez
- IUQOEM – Department of Organic and Inorganic ChemistrySchool of ChemistryUniversity of OviedoJulián Clavería 833006OviedoSpain
| |
Collapse
|
2
|
Sreedharan R, Gandhi T. Masters of Mediation: MN(SiMe 3) 2 in Functionalization of C(sp 3)-H Latent Nucleophiles. Chemistry 2024; 30:e202400435. [PMID: 38497321 DOI: 10.1002/chem.202400435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/19/2024]
Abstract
Organoalkali compounds have undergone a far-reaching transformation being a coupling partner to a mediator in unusual organic conversions which finds its spot in the field of sustainable synthesis. Transition-metal catalysis has always been the priority in C(sp3)-H bond functionalization, however alternatively, in recent times this has been seriously challenged by earth-abundant alkali metals and their complexes arriving at new sustainable organometallic reagents. In this line, the importance of MN(SiMe3)2 (M=Li, Na, K & Cs) reagent revived in C(sp3)-H bond functionalization over recent years in organic synthesis is showcased in this minireview. MN(SiMe3)2 reagent with higher reactivity, enhanced stability, and bespoke cation-π interaction have shown eye-opening mediated processes such as C(sp3)-C(sp3) cross-coupling, radical-radical cross-coupling, aminobenzylation, annulation, aroylation, and other transformations to utilize readily available petrochemical feedstocks. This article also emphasizes the unusual reactivity of MN(SiMe3)2 reagent in unreactive and robust C-X (X=O, N, F, C) bond cleavage reactions that occurred alongside the C(sp3)-H bond functionalization. Overall, this review encourages the community to exploit the untapped potential of MN(SiMe3)2 reagent and also inspires them to take up this subject to even greater heights.
Collapse
Affiliation(s)
- Ramdas Sreedharan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Thirumanavelan Gandhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
3
|
Rajamanickam KR, Lee S. Ring Opening of N-Acyl Lactams Using Nickel-Catalyzed Transamidation. J Org Chem 2024. [PMID: 38173413 DOI: 10.1021/acs.joc.3c02486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
We successfully developed a nickel-catalyzed transamidation method for the ring opening of N-acyl lactams. The method involves a reaction between N-benzoylpyrrolidin-2-one derivatives and aniline derivatives, with Ni(PPh3)2Cl2 serving as the catalyst, 2,2'-bipyridine as the ligand, and manganese as the reducing agent. This reaction led to the formation of ring-opening-amidated products in good yields. Notably, the method exhibited excellent efficiency for producing the corresponding ring-opening transamidation products for various ring sizes, including four-, five-, six-, seven-, and eight-membered ring lactams.
Collapse
Affiliation(s)
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
4
|
Moon H, Lee S. Reductive cross-coupling of N-acyl pyrazole and nitroarene using tetrahydroxydiboron: synthesis of secondary amides. Org Biomol Chem 2023; 21:8329-8334. [PMID: 37795749 DOI: 10.1039/d3ob01040f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
We report on a new method for the synthesis of amides using acyl pyrazoles and nitroarenes under reducing conditions. It was found that acyl pyrazoles react with organo-nitro compounds in the presence of B2(OH)4, giving the corresponding amides in good yields. We demonstrated that benzoyl pyrazoles having various substituents and nitroarenes with different substituents can be used to produce a range of N-substituted benzamides. The method shows good functional group tolerance and has potential application in the synthesis of a variety of organic molecules.
Collapse
Affiliation(s)
- Hayeon Moon
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
5
|
Gao P, Rahman MM, Zamalloa A, Feliciano J, Szostak M. Classes of Amides that Undergo Selective N-C Amide Bond Activation: The Emergence of Ground-State Destabilization. J Org Chem 2023; 88:13371-13391. [PMID: 36054817 DOI: 10.1021/acs.joc.2c01094] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ground-state destabilization of the N-C(O) linkage represents a powerful tool to functionalize the historically inert amide bond. This burgeoning reaction manifold relies on the availability of amide bond precursors that participate in weakening of the nN → π*C=O conjugation through N-C twisting, N pyramidalization, and nN electronic delocalization. Since 2015, acyl N-C amide bond activation through ground-state destabilization of the amide bond has been achieved by transition-metal-catalyzed oxidative addition of the N-C(O) bond, generation of acyl radicals, and transition-metal-free acyl addition. This Perspective summarizes contributions of our laboratory in the development of new ground-state-destabilized amide precursors enabled by twist and electronic activation of the amide bond and synthetic utility of ground-state-destabilized amides in cross-coupling reactions and acyl addition reactions. The use of ground-state-destabilized amides as electrophiles enables a plethora of previously unknown transformations of the amide bond, such as acyl coupling, decarbonylative coupling, radical coupling, and transition-metal-free coupling to forge new C-C, C-N, C-O, C-S, C-P, and C-B bonds. Structural studies of activated amides and catalytic systems developed in the past decade enable the view of the amide bond to change from the "traditionally inert" to "readily modifiable" functional group with a continuum of reactivity dictated by ground-state destabilization.
Collapse
Affiliation(s)
- Pengcheng Gao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Md Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Alfredo Zamalloa
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Jessica Feliciano
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
6
|
Liu C, Szostak M. Amide N-C Bond Activation: A Graphical Overview of Acyl and Decarbonylative Coupling. SYNOPEN 2023; 7:88-101. [PMID: 38037650 PMCID: PMC10686541 DOI: 10.1055/a-2035-6733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
This Graphical Review provides an overview of amide bond activation achieved by selective oxidative addition of the N-C(O) acyl bond to transition metals and nucleophilic acyl addition, resulting in acyl and decarbonylative coupling together with key mechanistic details pertaining to amide bond distortion underlying this reactivity manifold.
Collapse
Affiliation(s)
- Chengwei Liu
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| |
Collapse
|
7
|
Ryu I, Fukuyama T, Baptiste P, Kuwahara T. RuH‐Catalyzed Synthesis of 1,3‐Diaryl Ketones via Cross‐Coupling of Aromatic Enones with Aromatic Aldehydes and Mechanistic Insights. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Adebomi V, Wang Y, Sriram M, Raj M. Selective Conversion of Unactivated C-N Amide Bond to C-C bond via Steric and Electronic Resonance Destabilization. Org Lett 2022; 24:6525-6530. [PMID: 36067532 PMCID: PMC10165555 DOI: 10.1021/acs.orglett.2c02420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The chemo- and site-selective reaction at the particular C-N amide bond among a sea of other amides is a significant and long-standing challenge. Although the use of twisted amides has been demonstrated for modifications of inert C-N amide bonds, none of these methods can selectively activate a particular amide bond for C-C bond formation in the presence of similar amides. Using density functional theory as a guide, we report the first site-selective C-C bond modification of a particular C-N amide bond in polyamides with a low twist angle by combining ground-state steric distortion with electronic activation.
Collapse
Affiliation(s)
- Victor Adebomi
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Yuwen Wang
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Mahesh Sriram
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Monika Raj
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
9
|
Singh S, Kandasamy J. Synthesis of 1,3‐dicarbonyl compounds using N‐Cbz amides as an acyl source under transition metal‐free conditions at room temperature. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shweta Singh
- IIT BHU: Indian Institute of Technology BHU Varanasi Chemistry INDIA
| | - Jeyakumar Kandasamy
- Indian Institute of Technology (BHU) Chemistry Varanasi 221005 Varanasi INDIA
| |
Collapse
|
10
|
Joseph D, Oh MS, Jayaraman A, Lee S. Amides Activation: Transition Metal‐Free Coupling Between
CN
Activated Amides and Enolizable Amides. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Devaneyan Joseph
- Department of Chemistry Chonnam National University Gwangju 61186 Republic of Korea
| | - Min Seok Oh
- Department of Chemistry Chonnam National University Gwangju 61186 Republic of Korea
| | - Aravindan Jayaraman
- Department of Chemistry Chonnam National University Gwangju 61186 Republic of Korea
| | - Sunwoo Lee
- Department of Chemistry Chonnam National University Gwangju 61186 Republic of Korea
| |
Collapse
|
11
|
Joseph D, Park MS, Lee S. Metal-free transamidation of benzoylpyrrolidin-2-one and amines under aqueous conditions. Org Biomol Chem 2021; 19:6227-6232. [PMID: 34225358 DOI: 10.1039/d1ob00967b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
N-Acyl lactam amides, such as benzoylpyrrolidin-2-one, benzoylpiperidin-2-one, and benzoylazepan-2-one reacted with amines in the presence of DTBP and TBAI to afford the transamidated products in good yields. The reactions were conducted under aqueous conditions and good functional group tolerance was achieved. Both aliphatic and aromatic primary amines displayed good activity under metal-free conditions. A radical reaction pathway is proposed.
Collapse
Affiliation(s)
- Devaneyan Joseph
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Myeong Seong Park
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|