1
|
Volpi G, Laurenti E, Rabezzana R. Imidazopyridine Family: Versatile and Promising Heterocyclic Skeletons for Different Applications. Molecules 2024; 29:2668. [PMID: 38893542 PMCID: PMC11173518 DOI: 10.3390/molecules29112668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
In recent years, there has been increasing attention focused on various products belonging to the imidazopyridine family; this class of heterocyclic compounds shows unique chemical structure, versatile optical properties, and diverse biological attributes. The broad family of imidazopyridines encompasses different heterocycles, each with its own specific properties and distinct characteristics, making all of them promising for various application fields. In general, this useful category of aromatic heterocycles holds significant promise across various research domains, spanning from material science to pharmaceuticals. The various cores belonging to the imidazopyridine family exhibit unique properties, such as serving as emitters in imaging, ligands for transition metals, showing reversible electrochemical properties, and demonstrating biological activity. Recently, numerous noteworthy advancements have emerged in different technological fields, including optoelectronic devices, sensors, energy conversion, medical applications, and shining emitters for imaging and microscopy. This review intends to provide a state-of-the-art overview of this framework from 1955 to the present day, unveiling different aspects of various applications. This extensive literature survey may guide chemists and researchers in the quest for novel imidazopyridine compounds with enhanced properties and efficiency in different uses.
Collapse
Affiliation(s)
- Giorgio Volpi
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy; (E.L.)
| | | | | |
Collapse
|
2
|
Sahoo S, Rao MA, Pal S. An Aldehyde-Driven, Fe(0)-Mediated, One-Pot Reductive Cyclization: Direct Access to 5,6-Dihydro-quinazolino[4,3- b]quinazolin-8-ones and Photophysical Study. J Org Chem 2023. [PMID: 37471271 DOI: 10.1021/acs.joc.3c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
A short, proficient, and regioselective synthesis of biheterocyclic 5,6-dihydro-quinazolino[4,3-b]quinazolin-8-ones has been revealed via an Fe(0)-powder-mediated, one-pot reductive cyclization protocol. Mechanistic investigation proved that water acts as a source of hydrogen for the reduction of the nitro group and the reaction rate was accelerated by an aldehyde. The designed transformation works under aerobic conditions, providing a series of bio-inspired molecular scaffolds. In addition, the photophysical study showed blue fluorescence emission with a good fluorescence quantum yield.
Collapse
Affiliation(s)
- Subrata Sahoo
- Organic Chemistry Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| | - Manthri Atchuta Rao
- Organic Chemistry Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| | - Shantanu Pal
- Organic Chemistry Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| |
Collapse
|
3
|
Sahoo S, Pal S. Access to Dihydroquinazolinones, spiro‐Quinazolinones and their Bioactive Molecular Scaffolds by Exploring the Unique Reactivity of 2‐Nitrobenzonitrile towards Cu‐Hydrazine Hydrate. ChemistrySelect 2023. [DOI: 10.1002/slct.202300290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Subrata Sahoo
- Organic Chemistry Laboratory School of Basic Sciences Indian Institute of Technology Bhubaneswar Arugul, Khordha Bhubaneswar, Odisha 752050 India
| | - Shantanu Pal
- Organic Chemistry Laboratory School of Basic Sciences Indian Institute of Technology Bhubaneswar Arugul, Khordha Bhubaneswar, Odisha 752050 India
| |
Collapse
|
4
|
Singla D, Paul K. One-Pot Cascade Access to Ru(II)-Catalyzed Regioselective C(sp 2)-H Activation/Alkenylation of Chromeno[4,3- c]pyrazol-4-ones and Their Emission Solvatochromic Studies. J Org Chem 2022; 87:16436-16448. [DOI: 10.1021/acs.joc.2c02130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Dinesh Singla
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India
| |
Collapse
|
5
|
Lu P, Zhuang W, Lu L, Liu A, Chen Y, Wu C, Zhang X, Huang Q. Chemodivergent Synthesis of Indeno[1,2- b]indoles and Isoindolo[2,1- a]indoles via Mn(III)-Mediated or Electrochemical Intramolecular Radical Cross-Dehydrogenative Coupling. J Org Chem 2022; 87:10967-10981. [PMID: 35901234 DOI: 10.1021/acs.joc.2c01238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Chemodivergent synthesis of indeno[1,2-b]indoles and isoindolo[2,1-a]indoles from the same starting materials involving radical cross-dehydrogenative couplings have been developed. Mn(OAc)3·2H2O selectively promoted an intramolecular radical C-H/C-H dehydrogenative coupling reaction to provide indeno[1,2-b]indoles, while an intramolecular radical C-H/N-H dehydrogenative coupling reaction could proceed via electrochemistry to deliver isoindolo[2,1-a]indoles. Plausible mechanisms of the chemodivergent reactions were proposed.
Collapse
Affiliation(s)
- Piao Lu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| | - Weihui Zhuang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| | - Leipeng Lu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| | - Anyi Liu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| | - Yixi Chen
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| | - Chenmeng Wu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| | - Xiaofeng Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| | - Qiufeng Huang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| |
Collapse
|
6
|
Ghobakhloo F, Azarifar D, Mohammadi M, Ghaemi M. γ‐Fe
2
O
3
@Cu
3
Al‐LDH/HEPES a novel heterogeneous amphoteric catalyst for synthesis of annulated pyrazolo[3,4‐d]pyrimidines. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Farzaneh Ghobakhloo
- Department of Organic Chemistry, Faculty of Chemistry Bu–Ali Sina University Hamedan Iran
| | - Davood Azarifar
- Department of Organic Chemistry, Faculty of Chemistry Bu–Ali Sina University Hamedan Iran
| | - Masoud Mohammadi
- Department of Chemistry, Faculty of Science Ilam University Ilam P.O. Box 69315516 Iran
| | - Masoumeh Ghaemi
- Department of Organic Chemistry, Faculty of Chemistry Bu–Ali Sina University Hamedan Iran
| |
Collapse
|
7
|
Barboza AA, Dantas JA, Jardim GADM, Ferreira MAB, Costa MO, Chiavegatti A. Recent Advances in Palladium-Catalyzed Oxidative Couplings in the Synthesis/Functionalization of Cyclic Scaffolds Using Molecular Oxygen as the Sole Oxidant. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1701-7397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractOver the past years, Pd(II)-catalyzed oxidative couplings have enabled the construction of molecular scaffolds with high structural diversity via C–C, C–N and C–O bond-forming reactions. In contrast to the use of stoichiometric amounts of more common oxidants, such as metal salts (Cu and Ag) and benzoquinone derivatives, the use of molecular oxygen for the direct or indirect regeneration of Pd(II) species presents itself as a more viable alternative in terms of economy and sustainability. In this review, we describe recent advances on the development of Pd-catalyzed oxidative cyclizations/functionalizations, where molecular oxygen plays a pivotal role as the sole stoichiometric oxidant.1 Introduction2 Oxidative C–C and C–Nu Coupling2.1 Intramolecular Oxidative C–Nu Heterocyclization Reactions2.1.1 C–H Activation2.1.2 Wacker/Aza-Wacker-Type Cyclization2.1.3 Tandem Wacker/Aza-Wacker and Cyclization/Cross-Coupling Reactions2.2 Intermolecular Oxidative C–Nu Heterocoupling Reactions2.3 Intramolecular Oxidative (C–C) Carbocyclization Reactions2.4 Intermolecular Oxidative C–C Coupling Reactions2.4.1 Cyclization Reactions2.4.2 Cross-Coupling Reactions2.4.3 Homo-Coupling Reactions3 Aerobic Dehydrogenative Coupling/Functionalization4 Oxidative C–H Functionalization5 Summary
Collapse
|
8
|
Km K, Kumar S, Kumar A, Kant R, Chintakunta R. Palladium‐Catalyzed Intramolecular C‐H Heteroarylation to Access Fused Tricyclic Oxazolo[4,5‐c]Quinolines. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kajol Km
- CSIR-CDRI: Central Drug Research Institute Medicinal & Process Chemistry Division CSIR-CDRI, Lucknow, UP, India 226031 LUCKNOW INDIA
| | - Sujeet Kumar
- CSIR-CDRI: Central Drug Research Institute Medicinal & Process Chemistry Division CSIR-CDRI, Lucknow, UP, India 226031 LUCKNOW INDIA
| | - Amit Kumar
- CSIR-CDRI: Central Drug Research Institute Medicinal & Process Chemistry Division CSIR-CDRI, Lucknow, UP, India 226031 LUCKNOW INDIA
| | - Ruchir Kant
- CSIR-CDRI: Central Drug Research Institute Medicinal & Process Chemistry Division CSIR-CDRI, Lucknow, UP, India 226031 LUCKNOW INDIA
| | - Ramesh Chintakunta
- CSIR-CDRI: Central Drug Research Institute Medicinal and Process Chemistry Division CSIR-CDRI, Lucknow, UP, India 226031 LUCKNOW INDIA
| |
Collapse
|
9
|
Liao XZ, Liu M, Dong L. An Approach to Vinylidenequinazolines from Isoxazoles and Dioxazolones. J Org Chem 2022; 87:3741-3750. [PMID: 35089015 DOI: 10.1021/acs.joc.1c02746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An effective strategy for the synthesis of vinylidenequinazolines has been efficaciously developed, which involves Rh(III)-assisted C-H amidation followed by ring-opening and intramolecular annulation. This protocol shows a straightforward way to construct diverse quinazoline units with a wide functional group compatibility from readily available isoxazoles and dioxazolones.
Collapse
Affiliation(s)
- Xian-Zhang Liao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Man Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Debnath S, Parveen S, Pradhan P, Das I, Das T. Benzo[4,5]imidazo[1,2- a]pyridines and benzo[4,5]imidazo[1,2- a]pyrimidines: recent advancements in synthesis of two diversely important heterocyclic motifs and their derivatives. NEW J CHEM 2022. [DOI: 10.1039/d2nj00546h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrogen heterocycles are some of the most important compounds that are found in nature or synthesized otherwise.
Collapse
Affiliation(s)
| | - Syaleena Parveen
- Department of Chemistry, NIT Jamshedpur, Jamshedpur 831014, India
| | | | - Ipsita Das
- Department of Chemistry, NIT Jamshedpur, Jamshedpur 831014, India
| | - Tapas Das
- Department of Chemistry, NIT Jamshedpur, Jamshedpur 831014, India
| |
Collapse
|
11
|
Sahoo S, Pal S. Copper-Catalyzed One-Pot Synthesis of Quinazolinones from 2-Nitrobenzaldehydes with Aldehydes: Application toward the Synthesis of Natural Products. J Org Chem 2021; 86:18067-18080. [PMID: 34813342 DOI: 10.1021/acs.joc.1c02343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A novel, efficient, and atom-economical approach for the construction of quinazolinones from 2-nitrobenzaldehydes has been unveiled via copper-catalyzed nitrile formation, hydrolysis, and reduction in one pot for the first time. In this reaction, urea is used as a source of nitrogen for nitrile formation, hydrazine hydrate is used for both the reduction of the nitro group and the hydrolysis of nitrile, and atmospheric oxygen is used as the sole oxidant. The method portrays a wide substrate scope with good functional group tolerances. Moreover, this method was applied for the synthesis of schizocommunin, tryptanthrin, phaitanthrin-A, phaitanthrin-B, and 8H-quinazolino[4,3-b]quinazolin-8-one.
Collapse
Affiliation(s)
- Subrata Sahoo
- Organic Chemistry Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| | - Shantanu Pal
- Organic Chemistry Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| |
Collapse
|
12
|
Rakshit A, Dhara HN, Alam T, Dahiya A, Patel BK. Cu(II)-Promoted Cascade Synthesis of Fused Imidazo-Pyridine-Carbonitriles. J Org Chem 2021; 86:17504-17510. [PMID: 34723521 DOI: 10.1021/acs.joc.1c02198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A Cu(II)-promoted synthesis of an aza-fused N-heterocycle having a benz-imidazopyridine scaffold is developed via an addition-cyclization reaction followed by an Ullmann-type C-N coupling between o-iodoanilines and γ-ketodinitriles. This protocol features a broad substrate scope, giving products in 32-84% yields. The compounds show excellent photoluminescence properties having two absorption maxima in the region between 270-280 and 338-350 nm and emission maxima in the range of 502-533 nm. The HOMO-LUMO energy gap of 3.49-3.57 eV was determined using Gaussian 09 at the B3LYP/6-31G (d, p) basis set level. We also demonstrated a few postsynthetic modifications.
Collapse
Affiliation(s)
- Amitava Rakshit
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Hirendra Nath Dhara
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Tipu Alam
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Anjali Dahiya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
13
|
Madhavan S, Keshri SK, Kapur M. Transition Metal‐Mediated Functionalization of Isoxazoles: A Review. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Suchithra Madhavan
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhopal 462066, MP India
| | - Santosh Kumar Keshri
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhopal 462066, MP India
| | - Manmohan Kapur
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhopal 462066, MP India
| |
Collapse
|
14
|
Li Y, Liu H, Huang Z, Wang H, Yu Z. Palladium-catalyzed cross-dehydrogenative-coupling of nitro-substituted internal alkenes with terminal alkenes. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Mondal A, Sharma R, Pal D, Srimani D. Recent Progress in the Synthesis of Heterocycles through Base Metal‐Catalyzed Acceptorless Dehydrogenative and Borrowing Hydrogen Approach. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100517] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Avijit Mondal
- Department of Chemistry Indian Institute of Technology Guwahati, Assam Kamrup (Rural) 781039 India
| | - Rahul Sharma
- Department of Chemistry Indian Institute of Technology Guwahati, Assam Kamrup (Rural) 781039 India
| | - Debjyoti Pal
- Department of Chemistry Indian Institute of Technology Guwahati, Assam Kamrup (Rural) 781039 India
| | - Dipankar Srimani
- Department of Chemistry Indian Institute of Technology Guwahati, Assam Kamrup (Rural) 781039 India
| |
Collapse
|