1
|
Kobayakawa T, Arioka M, Yamamoto K, Tsuji K, Tamamura H. Diastereoselective synthesis of ( Z)-fluoroalkene dipeptide isosteres utilizing chiral auxiliaries. Org Biomol Chem 2025; 23:4333-4336. [PMID: 39945507 DOI: 10.1039/d5ob00189g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
An efficient method for diastereo-controlled synthesis of (Z)-fluoroalkene dipeptide isosteres (FADIs) was developed. Two chiral centers were constructed by applying our synthetic methodology for chloroalkene dipeptide isosteres (CADIs) using Ellman's imine for corresponding to the N-terminal amino acid residues and Oppolzer's sultam for corresponding to the C-terminal amino acid residues, affording dipeptidomimetic in a stereocontrolled manner with high diastereoselectivity.
Collapse
Affiliation(s)
- Takuya Kobayakawa
- Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Marisa Arioka
- Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Kenichi Yamamoto
- Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Kohei Tsuji
- Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Hirokazu Tamamura
- Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
2
|
Kobayakawa T, Tsuji K, Tamamura H. Design, synthesis and evaluation of bioactivity of peptidomimetics based on chloroalkene dipeptide isosteres. Bioorg Med Chem 2024; 110:117811. [PMID: 38959684 DOI: 10.1016/j.bmc.2024.117811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024]
Abstract
Ample biologically active peptides have been found, identified and modified for use in drug discovery to date. However, several factors, such as low metabolic stability due to proteolysis and non-specific interactions with multiple off-target molecules, might limit the therapeutic use of peptides. To enhance the stability and/or bioactivity of peptides, the development of "peptidomimetics," which mimick peptide molecules, is considered to be idealistic. Hence, chloroalkene dipeptide isosteres (CADIs) was designed, and their synthetic methods have been developed by us. Briefly, in a CADI an amide bond in peptides is replaced with a chloroalkene structure. CADIs might be superior mimetics of amide bonds because the Van der Waals radii (VDR) and the electronegativity value of a chlorine atom are close to those of the replaced oxygen atom. By a developed method of the "liner synthesis", N-tert-butylsulfonyl protected CADIs can be synthesized via a key reaction involving diastereoselective allylic alkylation using organocopper reagents. On the other hand, by a developed method of the "convergent synthesis", N-fluorenylmethoxycarbonyl (Fmoc)-protected carboxylic acids can be also constructed based on N- and C-terminal analogues from corresponding amino acid starting materials via an Evans syn aldol reaction and the Ichikawa allylcyanate rearrangement reaction involving a [3.3] sigmatropic rearrangement. Notably, CADIs can also be applied for Fmoc-based solid-phase peptide synthesis and therefore introduced into bioactive peptides including as the Arg-Gly-Asp (RGD) peptide and the amyloid β fragment Lys-Leu-Val-Phe-Phe (KLVFF) peptide, which are correlated with cell attachment and Alzheimer's disease (AD), respectively. These CADI-containing peptidomimetics stabilized the conformation and enhanced the potency of the cyclic RGD peptide and the cyclic KLVFF peptide.
Collapse
Affiliation(s)
- Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kohei Tsuji
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
3
|
Iio C, Sato K, Mase N, Narumi T. Substitution Effects of Alkene Dipeptide Isosteres on Adjacent Peptide Bond Rotation. Chem Pharm Bull (Tokyo) 2024; 72:596-599. [PMID: 38945948 DOI: 10.1248/cpb.c24-00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Alkene dipeptide isosteres (ADIs) are promising surrogates of peptide bonds that enhance the bioactive peptide resistance to enzymatic hydrolysis in medicinal chemistry. In this study, we investigated the substitution effects of an ADI on the energy barrier of cis-trans isomerization in the acetyl proline methyl ester (Ac-Pro-OMe) model. The (E)-alkene-type proline analog, which favors a cis-amide conformation, exhibits a lower rotational barrier than native Ac-Pro-OMe. A van't Hoff analysis suggests that the energy barrier is primarily reduced by enthalpic repulsion. It was concluded that although carbon-carbon double bonds and pyrrolidine rings individually increase the rigidity of the incorporation site, their combination can provide structural flexibility and disrupt bioactive conformations. This work provides new insights into ADI-based drug design.
Collapse
Affiliation(s)
- Chihiro Iio
- Graduate School of Medical Photonics, Shizuoka University
| | - Kohei Sato
- Graduate School of Integrated Science and Technology, Shizuoka University
| | - Nobuyuki Mase
- Graduate School of Integrated Science and Technology, Shizuoka University
| | - Tetsuo Narumi
- Graduate School of Medical Photonics, Shizuoka University
- Graduate School of Integrated Science and Technology, Shizuoka University
| |
Collapse
|
4
|
Kodama Y, Takeo S, Fujimoto J, Sato K, Mase N, Narumi T. Synthesis and Structural Characterization of β-Turn Mimics Containing ( Z)-Chloroalkene Dipeptide Isosteres. J Org Chem 2022; 87:2167-2177. [PMID: 35179382 DOI: 10.1021/acs.joc.1c03115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Described here is the synthetic, spectroscopic, crystallographic, and computational analysis of a series of peptidomimetics containing l-Xaa-d-Yaa-type (Z)-chloroalkene dipeptide isosteres (CADIs) that were measured in an investigation of the β-turn mimicry of this peptide bond surrogate. We found that the 1,3-allylic strain across the chloroalkene moiety engenders the hyperconjugative interactions between the chloroalkene moiety and the C-H bonding or antibonding orbitals of the C-H bonds in allylic positions. These effects contribute significantly to the stabilization of β-turn structures.
Collapse
Affiliation(s)
- Yuki Kodama
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Sayuri Takeo
- Course of Applied Chemistry and Biochemical Engineering, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Junko Fujimoto
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Kohei Sato
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan.,Course of Applied Chemistry and Biochemical Engineering, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan.,Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Nobuyuki Mase
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan.,Course of Applied Chemistry and Biochemical Engineering, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan.,Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Tetsuo Narumi
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan.,Course of Applied Chemistry and Biochemical Engineering, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan.,Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| |
Collapse
|
5
|
Kodama Y, Imai S, Fujimoto J, Sato K, Mase N, Narumi T. Stereoselective synthesis of highly functionalized ( Z)-chloroalkene dipeptide isosteres containing an α,α-disubstituted amino acid. Chem Commun (Camb) 2021; 57:6915-6918. [PMID: 34152343 DOI: 10.1039/d1cc02952e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Described here is the first stereoselective synthesis of highly functionalized chloroalkene dipeptide isosteres containing an α,α-disubstituted amino acid (ααAA). This synthesis requires the construction of a quaternary carbon center, and this challenge was overcome by the Aza-Darzens condensation of ketimine with α,α-dichloroenolate, producing 2-chloroaziridines with quaternary carbon centers including spirocyclic motifs, which are valuable for the previously elusive synthesis of various ααAA-containing chloroalkene isosteres.
Collapse
Affiliation(s)
- Yuki Kodama
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, 432-8561, Japan.
| | - Saki Imai
- Course of Applied Chemistry and Biochemical Engineering, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, 432-8561, Japan
| | - Junko Fujimoto
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Shizuoka, 432-8561, Japan
| | - Kohei Sato
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, 432-8561, Japan. and Course of Applied Chemistry and Biochemical Engineering, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, 432-8561, Japan and Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Shizuoka, 432-8561, Japan
| | - Nobuyuki Mase
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, 432-8561, Japan. and Course of Applied Chemistry and Biochemical Engineering, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, 432-8561, Japan and Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Shizuoka, 432-8561, Japan and Green Energy Research Division, Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, 432-8561, Japan
| | - Tetsuo Narumi
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, 432-8561, Japan. and Course of Applied Chemistry and Biochemical Engineering, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, 432-8561, Japan and Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Shizuoka, 432-8561, Japan and Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, 432-8561, Japan
| |
Collapse
|
6
|
Kobayakawa T, Tamamura H. Chloroalkene dipeptide isosteres as peptidomimetics. Methods Enzymol 2021; 656:191-239. [PMID: 34325787 DOI: 10.1016/bs.mie.2021.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To date various biologically active peptides have been discovered, characterized and modified for drug discovery. However, the utilization of peptides as therapeutics involves some limitation due to several factors, including low metabolic stability owing to proteolysis and non-specific interactions with multiple off-target molecules. Hence, the development of "peptidomimetics," in which a part or whole of a molecule is modified, is a desirable strategy to enhance the stability or bioactivity of peptide-based drugs. In this situation, we have designed and developed a synthetic method for chloroalkene dipeptide isosteres (CADIs), which involves replacement of an amide bond in peptides with a chloroalkene structure and are classified as peptidomimetics. By a developed synthetic method, an N-tert-butylsulfonyl protected CADI can be obtained utilizing diastereoselective allylic alkylation with organocopper reagents as a key reaction. This CADI can be transformed into an N-fluorenylmethoxycarbonyl protected CADI in short steps. In addition, CADIs are used in Fmoc-based solid-phase peptide synthesis and introduced into a bioactive peptide. Protocols for practical preparation of some CADIs and peptide mimetics containing a CADI are described as detailed recipes.
Collapse
Affiliation(s)
- Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| |
Collapse
|