1
|
Hu J, Li B, Xiong F, Xu Y, Li Z, Gu L, Ma W, Mei R. Electrochemically Driven Chalcogenative Cyclization of 2-Alkynyl Aryl Oxime: Access to Functionalized Isoquinolines. J Org Chem 2025; 90:2626-2635. [PMID: 39918014 DOI: 10.1021/acs.joc.4c02655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
A transition-metal-free electrochemical chalcogenative cyclization of 2-alkynyl aryl oxime with dichalcogenides has been established to assemble valuable 4-organochalcogen isoquinolines concisely. This protocol proceeds via constant electrolysis in a user-friendly undivided cell setup. It circumvents the necessity of transition metal catalysts, chemical oxidants, and harsh reaction conditions. The practical utilities of the current protocol were illustrated by excellent functional group tolerance, remarkable regio-selectivity, easy scalability, mild reaction conditions, and transformable 4-organochalcogen isoquinoline products.
Collapse
Affiliation(s)
- Jiajun Hu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Bo Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| | - Feng Xiong
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Yue Xu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Zheyu Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Linghui Gu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Wenbo Ma
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Ruhuai Mei
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| |
Collapse
|
2
|
Capperucci A, Tanini D. Recent Advances in Selenium-Mediated Redox Functional Group Interconversions. CHEM REC 2024; 24:e202400174. [PMID: 39578242 DOI: 10.1002/tcr.202400174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/21/2024] [Indexed: 11/24/2024]
Abstract
The conversion of a functional group into another represents the core of organic synthesis. Within the arena of functional group interconversions, oxidative and reductive transformations occupy a privileged position and the development of new sustainable, selective, and general methodologies continue to attract significant interest. Owing to the versatility of their chemistry, selenium compounds offer significant opportunities to achieve both oxidation and reduction of a wide range of functional groups. Additionally, the possibility to generate in situ the active oxidant or reducing selenium species from suitable inert precursors enables the development of catalytic processes. In this review, recent advances in selenium-mediated oxidative and reductive functional group interconversions, with particular emphasis on cutting-edge researches bringing about new insights into the comprehension of their mechanistic aspects, will be discussed.
Collapse
Affiliation(s)
- Antonella Capperucci
- Department of Chemistry ''Ugo Schiff'', University of Florence, Via della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Damiano Tanini
- Department of Chemistry ''Ugo Schiff'', University of Florence, Via della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| |
Collapse
|
3
|
Gao L, Wang ZF, Wang LW, Tang HT, Mo ZY, He MX. Electrochemical selenium-catalyzed para-amination of N-aryloxyamides: access to polysubstituted aminophenols. Org Biomol Chem 2023; 21:7895-7899. [PMID: 37747203 DOI: 10.1039/d3ob01116j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Aminophenols are a class of important compounds with various pharmacological activities such as anticancer, anti-inflammatory, antimalarial, and antibacterial activities. Herein, we introduce a mild and efficient electrochemical selenium-catalyzed strategy to synthesize polysubstituted aminophenols. High atom efficiency and transition metal-free and oxidant-free conditions are the striking features of this protocol. By merging electrochemical and organoselenium-catalyzed processes, the intramolecular rearrangement of N-aryloxyamides produces para-amination products at room temperature in a simple undivided cell.
Collapse
Affiliation(s)
- Lei Gao
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Pharmacy School of Guilin Medical University, Guilin 541199, People's Republic of China.
| | - Zhi-Feng Wang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Pharmacy School of Guilin Medical University, Guilin 541199, People's Republic of China.
- Department of Burn, Wound Repair Surgery and Plastic Surgery, Department of Aesthetic Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, People's Republic of China
| | - Lin-Wei Wang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Pharmacy School of Guilin Medical University, Guilin 541199, People's Republic of China.
| | - Hai-Tao Tang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Pharmacy School of Guilin Medical University, Guilin 541199, People's Republic of China.
| | - Zu-Yu Mo
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Pharmacy School of Guilin Medical University, Guilin 541199, People's Republic of China.
- Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science of Yulin Normal University, Yulin 537000, People's Republic of China
| | - Mu-Xue He
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Pharmacy School of Guilin Medical University, Guilin 541199, People's Republic of China.
- Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science of Yulin Normal University, Yulin 537000, People's Republic of China
| |
Collapse
|
4
|
da Costa GP, Blödorn GB, Barcellos AM, Alves D. Recent Advances in the Use of Diorganyl Diselenides as Versatile Catalysts. Molecules 2023; 28:6614. [PMID: 37764391 PMCID: PMC10534850 DOI: 10.3390/molecules28186614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The importance of organoselenium compounds has been increasing in synthetic chemistry. These reagents are well-known as electrophiles and nucleophiles in many organic transformations, and in recent years, their functionality as catalysts has also been largely explored. The interest in organoselenium-based catalysts is due to their high efficacy, mild reaction conditions, strong functional compatibility, and great selectivity. Allied to organoselenium catalysts, the use of inorganic and organic oxidants that act by regenerating the catalytic species for the reaction pathway is common. Here, we provide a comprehensive review of the last five years of organic transformations promoted by diorganyl diselenide as a selenium-based catalyst. This report is divided into four sections: (1) cyclisation reactions, (2) addition reactions and oxidative functionalisation, (3) oxidation and reduction reactions, and (4) reactions involving phosphorus-containing starting materials.
Collapse
Affiliation(s)
- Gabriel Pereira da Costa
- Laboratório de Síntese Orgânica Limpa (LASOL), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas 96010-900, Brazil;
| | - Gustavo Bierhals Blödorn
- Laboratório de Síntese Orgânica Limpa (LASOL), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas 96010-900, Brazil;
| | - Angelita Manke Barcellos
- Escola de Química e Alimentos, Universidade Federal do Rio Grande (FURG), Rio Grande 96203-900, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa (LASOL), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas 96010-900, Brazil;
| |
Collapse
|
5
|
Baidya M, Dutta J, De Sarkar S. Electrochemical Organoselenium Catalysis for the Selective Activation of Alkynes: Easy Access to Carbonyl-pyrroles/oxazoles from N-Propargyl Enamines/Amides. Org Lett 2023; 25:3812-3817. [PMID: 37196050 DOI: 10.1021/acs.orglett.3c01355] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Intramolecular electro-oxidative addition of enamines or amides to nonactivated alkynes was attained to access carbonyl-pyrroles or -oxazoles from N-propargyl derivatives. Organoselenium was employed as the electrocatalyst, which played a crucial role as a π-Lewis acid and selectively activated the alkyne for the successful nucleophilic addition. The synthetic strategy permits a wide range of substrate scope up to 93% yield. Several mechanistic experiments, including the isolation of a selenium-incorporated intermediate adduct, enlighten the electrocatalytic pathway.
Collapse
Affiliation(s)
- Mrinmay Baidya
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Jhilik Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| |
Collapse
|
6
|
Chen J, Xiao Y, You X, Li S, Fu Y, Ouyang Y. Electrochemical Oxidative Selenation of 4
H
‐Pyrido‐[1,2‐
a
]‐pyrimidin‐4‐ones with Diorganyldiselenides. ChemistrySelect 2023. [DOI: 10.1002/slct.202203879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jinyang Chen
- Hunan Engineering Research Center for Recycled Aluminum Huaihua University Huaihua Hunan 418008 China
- College of Chemistry and Chemical Engineering Yangtze Normal University, Fuling Chongqing 408100 China
| | - Yao Xiao
- College of Chemistry and Chemical Engineering Yangtze Normal University, Fuling Chongqing 408100 China
| | - Xianhui You
- College of Chemistry and Chemical Engineering Yangtze Normal University, Fuling Chongqing 408100 China
| | - Shiqi Li
- College of Chemistry and Chemical Engineering Yangtze Normal University, Fuling Chongqing 408100 China
| | - Yuwei Fu
- College of Chemistry and Chemical Engineering Yangtze Normal University, Fuling Chongqing 408100 China
| | - Yuejun Ouyang
- Hunan Engineering Research Center for Recycled Aluminum Huaihua University Huaihua Hunan 418008 China
| |
Collapse
|
7
|
Zhang JQ, Shen C, Shuai S, Fang L, Hu D, Wang J, Zhou Y, Ni B, Ren H. Electrochemical Selenium-Catalyzed N,O-Difunctionalization of Ynamides: Access to Polysubstituted Oxazoles. Org Lett 2022; 24:9419-9424. [PMID: 36541615 DOI: 10.1021/acs.orglett.2c03811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A green and efficient approach for the difunctionalization of ynamides by merging the electrochemical and organoselenium-catalyzed processes is described. This strategy features mild reaction conditions, broad functional group tolerance and high atom-economy, and requires no external chemical oxidant. Hence, we provide a sustainable alternative for the synthesis of polysubstituted oxazoles.
Collapse
Affiliation(s)
- Jun-Qi Zhang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Chunjiao Shen
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Shihao Shuai
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Ling Fang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Dandan Hu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Jiali Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Yu Zhou
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Bukuo Ni
- Department of Chemistry, Texas A&M University-Commerce, Commerce, Texas 75429-3011, United States
| | - Hongjun Ren
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, China
| |
Collapse
|
8
|
Direct Electrooxidative Selenylation/Cyclization of Alkynes: Access to Functionalized Benzo[b]furans. Molecules 2022; 27:molecules27196314. [PMID: 36234851 PMCID: PMC9572441 DOI: 10.3390/molecules27196314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
A mild, practical, metal and oxidant-free methodology for the synthesis of various C-3 selenylated benzo[b]furan derivatives was developed through the intramolecular cyclization of alkynes promoted with diselenides via electrooxidation. A wide range of selenium-substituted benzo[b]furan derivatives were obtained in good to excellent yields with high regioselectivity under constant current in an undivided cell equipped with carbon and platinum plates as the anode and cathode, respectively. Moreover, the convergent approach exhibited good functional group tolerance and could be easily scaled up with good efficiency, providing rapid access to a diverse range of selenylated benzo[b]furans derivatives from simple, readily available starting materials.
Collapse
|
9
|
Zeng S, Fang S, Cai H, Wang D, Liu W, Hu X, Ruan Z, Sun P. Selenium‐Electrocatalytic Cyclization of 2‐Vinylanilides towards Indoles of Peptide Labeling. Chem Asian J 2022; 17:e202200762. [DOI: 10.1002/asia.202200762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/18/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Shaogao Zeng
- Jinan University College of Pharmacy International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education 510632 Guangzhou CHINA
| | - Songlin Fang
- Jinan University College of Pharmacy International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education 510632 Guangzhou CHINA
| | - Haiping Cai
- Guangzhou Medical University School of Pharmaceutical Sciences and the Fifth Affiliated Hospital Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target 511436 Guangzhou CHINA
| | - Dong Wang
- Jinan University College of Pharmacy International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education 510632 Guangzhou CHINA
| | - Weiling Liu
- Jinan University College of Pharmacy International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education 510632 Guangzhou CHINA
| | - Xinwei Hu
- Guangzhou Medical University School of Pharmaceutical Sciences and the Fifth Affiliated Hospital Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target 511436 Guangzhou CHINA
| | - Zhixiong Ruan
- Guangzhou Medical University School of Pharmaceutical Sciences Xinzao, Panyu District 511436 Guangzhou CHINA
| | - Pinghua Sun
- Jinan University College of Pharmacy International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education 510632 Guangzhou CHINA
| |
Collapse
|
10
|
Qian P, Jiang S, Fan H, Jiang S, Xu L, Liu J. Electrochemically Enabled Cascade Cyclization Reaction of Aromatic Aldehydes and Pyrazol-5-amines: Synthesis of Bis-pyrazolo[3,4- b:4',3'- e]pyridines. J Org Chem 2022; 87:9242-9249. [PMID: 35795996 DOI: 10.1021/acs.joc.2c00988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A facile method for the synthesis of bis-pyrazolo[3,4-b:4',3'-e]pyridines from easily available aromatic aldehydes and pyrazol-5-amines was developed via electrochemistry. The reaction proceeded smoothly under metal and external chemical oxidant-free conditions, giving a variety of bis-pyrazolo[3,4-b:4',3'-e]pyridines in moderate yields.
Collapse
Affiliation(s)
- Peng Qian
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P.R. China
| | - Shan Jiang
- Experimental and Training Management Center, Fuyang Normal University, Fuyang, Anhui 236037, P.R. China
| | - Hua Fan
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P.R. China
| | - Siqi Jiang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P.R. China
| | - Longlong Xu
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P.R. China
| | - Jiaojiao Liu
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P.R. China
| |
Collapse
|
11
|
Devi S, Jyoti, Kiran, Wadhwa D, Sindhu J. Electro-organic synthesis: an environmentally benign alternative for heterocycle synthesis. Org Biomol Chem 2022; 20:5163-5229. [PMID: 35730661 DOI: 10.1039/d2ob00572g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heterocyclic compounds are considered to be one of the most established structural classes due to their extensive application in agrochemicals, pharmaceuticals and organic materials. Over the past few years, the development of heterocyclic compounds has gone through a considerable renaissance from conventional traditional methodologies to non-conventional electro-organic synthesis. Replacing metal catalysts, strong oxidants and multi-step methodologies with metal and strong oxidant-free single-step protocols has revolutionized the field of sustainable organic synthesis. Electro-organic synthesis has evolved as a scalable and sustainable approach in different synthetic protocols in an environment-benign manner. The current review outlines the recent developments in C-C, C-N, C-S and C-O/Se bond formation for heterocycle synthesis using electrochemical methods. Different synthetic strategies and their detailed mechanistic description are presented to enlighten the future applications of electrochemistry in heterocycle synthesis.
Collapse
Affiliation(s)
- Suman Devi
- Department of Chemistry, Chaudhary Bansi Lal university, Bhiwani-127021, India.
| | - Jyoti
- Department of Chemistry, Chaudhary Bansi Lal university, Bhiwani-127021, India.
| | - Kiran
- Department of Chemistry, COBS&H, CCSHAU, Hisar-125004, India.
| | - Deepak Wadhwa
- Department of Chemistry, Chaudhary Bansi Lal university, Bhiwani-127021, India.
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCSHAU, Hisar-125004, India.
| |
Collapse
|
12
|
Li B, Zhou Y, Sun Y, Xiong F, Gu L, Ma W, Mei R. Electrochemical selenium-π-acid promoted hydration of alkynyl phosphonates. Chem Commun (Camb) 2022; 58:7566-7569. [PMID: 35708585 DOI: 10.1039/d2cc01901a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An unprecedented electrochemical selenium-π-acid promoted hydration of internal alkynes bearing a phosphonate auxiliary was described. Thus, valuable (hetero)aryl and alkyl ketones could be accessed under mild, metal- and external oxidant-free conditions. This protocol features high atom-economy, good chemo- and regio-selectivity, excellent functional group tolerance and easily transformable products. Control experiments demonstrate that phosphonate assistance is essential for this transformation.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China.,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| | - Yunhao Zhou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| | - Yanan Sun
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Feng Xiong
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Linghui Gu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| | - Ruhuai Mei
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China.,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| |
Collapse
|
13
|
Ding D, Xu L, Wei Y. The Synthesis of α-Keto Acetals from Terminal Alkynes and Alcohols via Synergistic Interaction of Organoselenium Catalysis and Electrochemical Oxidation. J Org Chem 2022; 87:4912-4917. [PMID: 35179035 DOI: 10.1021/acs.joc.1c02681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Herein, an unprecedented electrochemical approach for the synthesis of α-keto acetals has been established from readily available terminal alkynes and alcohols. By merging the electrochemical and organoselenium-catalyzed processes, the desired products are obtained at room temperature in the absence of basic or metallic additives, with carbonyl and acetal motifs incorporated simultaneously across the triple bonds in a single operation.
Collapse
Affiliation(s)
- Ding Ding
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xin-jiang Bingtuan, Shihezi University, Shihezi 832001, People's Republic of China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xin-jiang Bingtuan, Shihezi University, Shihezi 832001, People's Republic of China
| | - Yu Wei
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xin-jiang Bingtuan, Shihezi University, Shihezi 832001, People's Republic of China
| |
Collapse
|
14
|
Li X, Tao P, Cheng Y, Hu Q, Huang W, Li Y, Luo Z, Huang G. Recent Progress on the Electrochemical Difunctionalization of Alkenes/Alkynes. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|