1
|
Huang C, Zhang W, Liu Y, Zhang Z, Gong J, Wang X, Xue P, Feng L, Lu H. Pd/NBE-Catalyzed One-Pot Modular Synthesis of Tetrahydro-γ-carbolines. J Org Chem 2025; 90:5514-5522. [PMID: 40228234 DOI: 10.1021/acs.joc.5c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Tetrahydro-γ-carbolines are especially outstanding fused heterocyclic ring systems possessing significant biological activities in the central nervous system. Here, using commercially available NBE derivatives (NBEs), we report an efficient protocol for the one-pot modular synthesis of 4-substituted tetrahydro-γ-carbolines via Catellani/aza-Michael addition cascade from easily available 3-iodo-1-tosyl-1H-indole, aziridines and olefins. This approach exhibits a wide substrate scope, good yields, scalability, and potential extension toward the synthesis of Mebhydroline analogues.
Collapse
Affiliation(s)
- Chuantao Huang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - Wenlin Zhang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - Ying Liu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - Zhixin Zhang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - Jun Gong
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - Xiaobo Wang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - Ping Xue
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - Li Feng
- School of Public Health and Nursing, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - Helin Lu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China
- School of Health and Nursing, Wuchang University of Technology, Wuhan 430223, P. R. China
| |
Collapse
|
2
|
Luo D, Wang Q, Liu J, Mei H, Han J. Electrochemical synthesis of γ-carbolinones via sulfonylation-triggered cyclization of indole-3-carboxamides. Org Biomol Chem 2025; 23:1309-1313. [PMID: 39655526 DOI: 10.1039/d4ob01703j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
A novel electrochemical radical cyclization reaction of N-acryloyl-indole-3-carboxamides with sodium sulfinates as coupling partners has been developed, which delivers multi-substituted γ-carbolinones as products with up to 70% yields. This study represents the first example of the radical cyclization reaction of indole-3-carboxamides under electrochemical conditions. The reaction features a broad substrate scope of sodium sulfinates and indole-3-carboxamides, and provides a new and efficient strategy for the synthesis of γ-carbolinone derivatives.
Collapse
Affiliation(s)
- Dan Luo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Qian Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Jiang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Yamini P, Junaid M, Yadagiri D. Light-Induced Transformations of Donor-Donor Diazo Compounds Derived from N-Sulfonylhydrazones. Chem Asian J 2025; 20:e202401239. [PMID: 39579064 DOI: 10.1002/asia.202401239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/25/2024]
Abstract
The donor-donor carbene chemistry field is underdeveloped and often relies on harsh reaction conditions, utilizing either thermal or oxidative process with or without transition-metal catalysts. In this review, we discussed the synthesis and transformation of donor-donor diazo compounds from N-sulfonylhydrazones in the presence of light and base. The N-sulfonylhydrazones are easily accessible from the corresponding carbonyl compounds and sulfonyl hydrazides through condensation. The in situ generated N-sulfonyl anion in the presence of base would undergo the N-S bond cleavage with the aid of light to generate the donor-donor diazo compounds. The donor-donor diazo compounds showed various reactivity in the presence of light for the C-C and C-X bond formation, cyclopropanation reactions, and synthesis of nitrogen, oxygen-containing heterocyclic compounds, which all are discussed under metal-free conditions.
Collapse
Affiliation(s)
- Pokhriyal Yamini
- Department of Chemistry, Laboratory of Organic Synthesis & Catalysis, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Mohammad Junaid
- Department of Chemistry, Laboratory of Organic Synthesis & Catalysis, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Dongari Yadagiri
- Department of Chemistry, Laboratory of Organic Synthesis & Catalysis, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
4
|
Yi M, Wu X, Yang L, Yuan Y, Lu Y, Zhang Z. Visible Light Induced B-H Bond Insertion Reaction with Diazo Compounds. J Org Chem 2024; 89:12583-12590. [PMID: 39158102 DOI: 10.1021/acs.joc.4c01510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
A protocol induced by visible light for the direct insertion of α-carbonyl carbenes into the B-H bond of amine-borane adducts has been developed under conditions that are free of metal and photocatalyst. This approach provides a straightforward route to various organoboron compounds from diazo compounds and amine-borane adducts with moderate to good yields. Mechanistic investigations reveal that this photoinduced reaction proceeds through concerted carbene insertion into the B-H bond, and the photoinduced generation of free carbene from α-diazo esters may be the rate-determining step.
Collapse
Affiliation(s)
- Mingjun Yi
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaoyu Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Liqun Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yao Yuan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yan Lu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhaoguo Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
5
|
Zhang Z, Gevorgyan V. Visible Light-Induced Reactions of Diazo Compounds and Their Precursors. Chem Rev 2024; 124:7214-7261. [PMID: 38754038 DOI: 10.1021/acs.chemrev.3c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
In recent years, visible light-induced reactions of diazo compounds have attracted increasing attention in organic synthesis, leading to improvement of existing reactions, as well as to the discovery of unprecedented transformations. Thus, photochemical or photocatalytic generation of both carbenes and radicals provide milder tools toward these key intermediates for many valuable transformations. However, the vast majority of the transformations represent new reactivity modes of diazo compounds, which are achieved by the photochemical decomposition of diazo compounds and photoredox catalysis. In particular, the use of a redox-active photocatalysts opens the avenue to a plethora of radical reactions. The application of these methods to diazo compounds led to discovery of transformations inaccessible by the classical reactivity associated with carbenes and metal carbenes. In most cases, diazo compounds act as radical sources but can also serve as radical acceptors. Importantly, the described processes operate under mild, practical conditions. This Review describes this subfield of diazo compound chemistry, particularly focusing on recent advancements.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| |
Collapse
|
6
|
Dias SL, Chuang L, Liu S, Seligmann B, Brendel FL, Chavez BG, Hoffie RE, Hoffie I, Kumlehn J, Bültemeier A, Wolf J, Herde M, Witte CP, D'Auria JC, Franke J. Biosynthesis of the allelopathic alkaloid gramine in barley by a cryptic oxidative rearrangement. Science 2024; 383:1448-1454. [PMID: 38547266 DOI: 10.1126/science.adk6112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/26/2024] [Indexed: 04/02/2024]
Abstract
The defensive alkaloid gramine not only protects barley and other grasses from insects but also negatively affects their palatability to ruminants. The key gene for gramine formation has remained elusive, hampering breeding initiatives. In this work, we report that a gene encoding cytochrome P450 monooxygenase CYP76M57, which we name AMI synthase (AMIS), enables the production of gramine in Nicotiana benthamiana, Arabidopsis thaliana, and Saccharomyces cerevisiae. We reconstituted gramine production in the gramine-free barley (Hordeum vulgare) variety Golden Promise and eliminated it from cultivar Tafeno by Cas-mediated gene editing. In vitro experiments unraveled that an unexpected cryptic oxidative rearrangement underlies this noncanonical conversion of an amino acid to a chain-shortened biogenic amine. The discovery of the genetic basis of gramine formation now permits tailor-made optimization of gramine-linked traits in barley by plant breeding.
Collapse
Affiliation(s)
- Sara Leite Dias
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Seeland OT Gatersleben, Germany
| | - Ling Chuang
- Institute of Botany, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
- Centre of Biomolecular Drug Research, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Shenyu Liu
- Institute of Botany, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
- Centre of Biomolecular Drug Research, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Benedikt Seligmann
- Institute of Botany, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Fabian L Brendel
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Seeland OT Gatersleben, Germany
| | - Benjamin G Chavez
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Seeland OT Gatersleben, Germany
| | - Robert E Hoffie
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Seeland OT Gatersleben, Germany
| | - Iris Hoffie
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Seeland OT Gatersleben, Germany
| | - Jochen Kumlehn
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Seeland OT Gatersleben, Germany
| | - Arne Bültemeier
- Institute of Botany, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
- Centre of Biomolecular Drug Research, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Johanna Wolf
- Institute of Botany, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Marco Herde
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - John C D'Auria
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Seeland OT Gatersleben, Germany
| | - Jakob Franke
- Institute of Botany, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
- Centre of Biomolecular Drug Research, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| |
Collapse
|
7
|
Xie ZY, Xuan J. Advances in heterocycle synthesis through photochemical carbene transfer reactions. Chem Commun (Camb) 2024; 60:2125-2136. [PMID: 38284428 DOI: 10.1039/d3cc06056j] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Heterocyclic skeletons are commonly found in various bioactive molecules and pharmaceutical compounds, making them crucial in areas such as medicinal chemistry, materials science, and the realm of natural product synthesis. In recent years, the rapid advancements of visible light methodologies in organic synthesis have shown promising potential for the development of light-induced carbene transfer reactions. This is particularly significant as most organic molecules do not absorb visible light. Free carbene, known for its high activity, is frequently utilized for insertion reactions or cyclopropanation reactions. This review focuses on the photochemical strategy for the construction of heterocyclic skeletons, specifically highlighting the methods that employ visible light-promoted carbene transfer reactions.
Collapse
Affiliation(s)
- Zi-Yi Xie
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China.
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
8
|
Xia S, Jian Y, Zhang L, Zhang C, An Y, Wang Y. Visible-light-promoted N-H functionalization of O-substituted hydroxamic acid with diazo esters. RSC Adv 2023; 13:14501-14505. [PMID: 37188246 PMCID: PMC10176041 DOI: 10.1039/d3ra02407e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023] Open
Abstract
Herein we report an N-H functionalization of O-substituted hydroxamic acid with diazo esters under blue LED irradiation conditions. The present transformations could be performed efficiently under mild conditions without use of catalyst, additive and N2 atmosphere. Interestingly, when THF and 1,4-dioxane were employed as the reaction solvents, an active oxonium ylide involved three-component reaction and an N-H insertion of carbene species into hydroxamate occurred, respectively.
Collapse
Affiliation(s)
- Shuangshuang Xia
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yongchan Jian
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 P. R. China
| | - Liwen Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 P. R. China
| | - Cheng Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yuanyuan An
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yubin Wang
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 P. R. China
| |
Collapse
|
9
|
Pei C, Empel C, Koenigs RM. Photochemical Intermolecular Cyclopropanation Reactions of Allylic Alcohols for the Synthesis of [3.1.0]-Bicyclohexanes. Org Lett 2023; 25:169-173. [PMID: 36602193 DOI: 10.1021/acs.orglett.2c04010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cyclopropane-fused lactones are highly desirable in drug and natural products synthesis. Herein, we report on a photochemical, chemoselective reaction of aryldiazoacetates with allylic alcohols that furnishes cyclopropane-fused lactone skeletons efficiently in one step. The diastereoselectivity of the protocol was precisely controlled, and chemoselective cyclopropanation of allylic alcohols via free carbene intermediate followed by transesterification constitutes a series of bicyclic lactones in high yield without the formation of ether byproducts via typical O-H insertion reactions.
Collapse
Affiliation(s)
- Chao Pei
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Claire Empel
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
10
|
Zhao B, Li H, Jiang F, Wan JP, Cheng K, Liu Y. Synergistic Visible Light and Pd-Catalyzed C-H Alkylation of 1-Naphthylamines with α-Diazoesters. J Org Chem 2023; 88:640-646. [PMID: 36538361 DOI: 10.1021/acs.joc.2c01702] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The combination of visible light irradiation and Pd-catalysis has been practically employed for the C-H alkylation reactions of naphthylamines and α-diazo esters, leading to the synthesis of α-naphthyl functionalized acetates via C-C bond construction under mild reaction conditions and under solvent-free conditions. The light irradiation has been proven to play a pivotal role in the reactions, probably by promoting the generation of active carbene species from α-diazo esters.
Collapse
Affiliation(s)
- Baoli Zhao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.,Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Haifeng Li
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Fengxuan Jiang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Kai Cheng
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
11
|
Wang T, Chen X, Zhu D, Chung LW, Xu M. Rhodium(I) Carbene‐Promoted Enantioselective C−H Functionalization of Simple Unprotected Indoles, Pyrroles and Heteroanalogues: New Mechanistic Insights. Angew Chem Int Ed Engl 2022; 61:e202207008. [DOI: 10.1002/anie.202207008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Tian‐Yi Wang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences and School of Pharmacy University of Chinese Academy of Sciences Shanghai 201203 China
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Xiao‐Xuan Chen
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Dong‐Xing Zhu
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences and School of Pharmacy University of Chinese Academy of Sciences Shanghai 201203 China
| | - Lung Wa Chung
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Ming‐Hua Xu
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences and School of Pharmacy University of Chinese Academy of Sciences Shanghai 201203 China
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| |
Collapse
|
12
|
Xu MH, Wang TY, Chen XX, Zhu DX, Chung LW. Rhodium(I) Carbene‐Promoted Enantioselective C‐H Functionalization of Simple Unprotected Indoles, Pyrroles and Heteroanalogues: New Mechanistic Insights. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ming-Hua Xu
- Southern University of Science and Technology Department of Chemistry No. 1088, Xueyuan Road 518055 Shenzhen CHINA
| | - Tian-Yi Wang
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences State Key Laboratory of Drug Research CHINA
| | - Xiao-Xuan Chen
- Southern University of Science and Technology Chemistry CHINA
| | - Dong-Xing Zhu
- Shanghai Institute of Materia Medica Chinese Academy of Sciences State Key Laboratory of Drug Research CHINA
| | - Lung Wa Chung
- Southern University of Science and Technology Chemistry CHINA
| |
Collapse
|
13
|
Catalyst‐Free Visible Light Mediated Synthesis of Unsymmetrical Tertiary Arylphosphines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Pei C, Koenigs RM. A Computational Study on the Photochemical O-H Functionalization of Alcohols with Diazoacetates. J Org Chem 2022; 87:6832-6837. [PMID: 35500213 DOI: 10.1021/acs.joc.2c00513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this computational study, we provide a detailed analysis of the underlying reaction mechanism and show that a singlet carbene is initially formed. Depending on the pKA of the alcohol, this singlet carbene can engage in direct protonation or enol formation to yield the O-H functionalization product. On the contrary, propargylic alcohols take up a dual role and form a complex with the carbene intermediate that leads to facile cyclopropenation reactions.
Collapse
Affiliation(s)
- Chao Pei
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
15
|
Empel C, Pei C, Koenigs RM. Unlocking novel reaction pathways of diazoalkanes with visible light. Chem Commun (Camb) 2022; 58:2788-2798. [DOI: 10.1039/d1cc06521a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photochemistry has recently attracted the interest of synthetic chemists to conduct photolysis reactions of diazoalkanes. In this feature article, we provide a concise overview on this field, starting with discoveries...
Collapse
|
16
|
Huang MG, Shi S, Li M, Liu YJ, Zeng MH. Salicylaldehyde-Promoted Cobalt-Catalyzed C-H/N-H Annulation of Indolyl Amides with Alkynes: Direct Synthesis of a 5-HT3 Receptor Antagonist Analogue. Org Lett 2021; 23:7094-7099. [PMID: 34449224 DOI: 10.1021/acs.orglett.1c02502] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A cobalt-catalyzed annulation of the C(sp2)-H/N-H bond of indoloamides with alkynes assisted by 8-aminoquinoline is reported for the synthesis of six-membered indololactams. The use of salicylaldehyde as the ligand is crucial for this transformation. The protocol has a broad scope for both alkynes and indoles. Preparing an active Co complex illustrates that salicylaldehyde plays a key role in the C-H activation step. The synthetic applications are proven by the gram-scale reaction and one-step construction of the multicyclic 5-HT3 receptor antagonist.
Collapse
Affiliation(s)
- Mao-Gui Huang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Shuai Shi
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Ming Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Yue-Jin Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Ming-Hua Zeng
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.,Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
17
|
Sar S, Das R, Barman D, Latua P, Guha S, Gremaud L, Sen S. A sustainable C-H functionalization of indoles, pyrroles and furans under a blue LED with iodonium ylides. Org Biomol Chem 2021; 19:7627-7632. [PMID: 34524326 DOI: 10.1039/d1ob01219c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pyrrole and indole derivatives are functionalized via a green initiative with the dimethyl malonate derived phenyl iodonium ylide 4a in the presence of a blue LED via C-H functionalization of the respective heterocycles in methanol to generate the desired compounds 5-7 in moderate to good yields. Control experiments provide insight into the probable reaction mechanism. Finally, the strategy is successfully applied in the generation of azepino[4,5-b]indole 12a/b.
Collapse
Affiliation(s)
- Saibal Sar
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Chithera, Dadri, Gautam Buddha Nagar, UP 201314, India.
| | - Ranajit Das
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Chithera, Dadri, Gautam Buddha Nagar, UP 201314, India.
| | - Dhiraj Barman
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Chithera, Dadri, Gautam Buddha Nagar, UP 201314, India.
| | - Pikaso Latua
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Chithera, Dadri, Gautam Buddha Nagar, UP 201314, India.
| | - Souvik Guha
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Chithera, Dadri, Gautam Buddha Nagar, UP 201314, India.
| | - Ludovic Gremaud
- School of Engineering and Architecture, Institute of Chemical Technology at University of Applied Sciences and Arts of Western Switzerland, CH-1700 Fribourg, Switzerland
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Chithera, Dadri, Gautam Buddha Nagar, UP 201314, India.
| |
Collapse
|
18
|
Cai B, Xuan J. Visible Light-Promoted Transformation of Diazo Compounds via the Formation of Free Carbene as Key Intermediate. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202109040] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|