1
|
Rastrepaeva DA, Argunov DA, Puchkin IA, Yashunsky DV, Krylov VB, Nifantiev NE. Synthesis of branched heterooligosaccharides related to Aspergillus galactomannan containing short Galf side chains. Carbohydr Res 2025; 549:109360. [PMID: 39718273 DOI: 10.1016/j.carres.2024.109360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/08/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
The members of a widespread Aspergillus fungi genus cause various diseases including the invasive aspergillosis with high morbidity and mortality rates, especially for immunosuppressed patients. One of the main carbohydrate structures on the surface of their cell wall is the galactomannan (GM) which is used in diagnostic kits for the detection of specific types of aspergillosis. However, limited specificity of currently available test systems urges the need for their further improvement. Herein we report the first synthesis of branched heterosaccharides related to GM and containing α-(1→2)-/α-(1→6)-linked tetramannoside backbone chain bearing one galactofuranoside unit or its β-(1→5)-linked dimer. The preparation of conjugates of the obtained spacered oligosaccharides with BSA is also performed to produce tools for the assessment the specificity of anti-Aspergillus immune response and to select antibodies suitable for the development of novel diagnostic kits that may discriminate distinct types of aspergillosis.
Collapse
Affiliation(s)
- Darya A Rastrepaeva
- Laboratory of Synthetic Glycovaccines, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991, Moscow, Russian Federation
| | - Dmitry A Argunov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991, Moscow, Russian Federation
| | - Ilya A Puchkin
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991, Moscow, Russian Federation
| | - Dmitry V Yashunsky
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991, Moscow, Russian Federation
| | - Vadim B Krylov
- Laboratory of Synthetic Glycovaccines, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991, Moscow, Russian Federation.
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991, Moscow, Russian Federation.
| |
Collapse
|
2
|
David LP, Ferron S, Favreau B, Yeni O, Ollivier S, Ropartz D, Compagnon I, Ferrières V, Le Dévéhat F, Legentil L. Synthesis of galactomannan fragments to help NMR assignment of polysaccharides extracted from lichens. Org Biomol Chem 2024; 22:2395-2403. [PMID: 38412026 DOI: 10.1039/d4ob00047a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The synthesis of six model trisaccharides representative of galactomannans produced by lichens was performed through stereoselective glycosylation. These standards include linear and branched galactomannans bearing either galactofuranosyl or galactopyranosyl entities. The complete assignment of 1H and 13C signals for both forms of synthetically reduced oligosaccharides was performed. The resulting NMR data were used to quickly demonstrate the structural characteristics of minor polysaccharides within different extracts of three representative lichens.
Collapse
Affiliation(s)
- Louis-Philippe David
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.
| | - Solenn Ferron
- Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - Bénédicte Favreau
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.
| | - Oznur Yeni
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Simon Ollivier
- INRAE, UR BIA, F-44316 Nantes, France
- INRAE, BIBS Facility, F-44316 Nantes, France
| | - David Ropartz
- INRAE, UR BIA, F-44316 Nantes, France
- INRAE, BIBS Facility, F-44316 Nantes, France
| | - Isabelle Compagnon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Vincent Ferrières
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.
| | | | - Laurent Legentil
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.
| |
Collapse
|
3
|
Yeni O, Allouche AR, Legentil L, Ferrières V, Compagnon I. Conformational preferences of the flexible galactofuranose sugar in gas-phase. Phys Chem Chem Phys 2023. [PMID: 37465915 DOI: 10.1039/d3cp01671d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
In contrast with the predominant pyranose form of galactose, galactofuranose is known to be highly flexible. Such flexibility poses a remarkable challenge in terms of structural studies, thus hindering the in depth understanding of the structure/function relationship in this rare sugar. A thorough computational study based on molecular dynamics and density functional theory supported by vibrational spectroscopy in the gas phase was carried out to provide a better understanding of the instrinsic conformational preferences of galactofuranose. Based on energetic and spectroscopic criteria, we report a subtantially reduced conformational landscape: methyl α-D-galactofuranose adopts E2/1E conformations and methyl β-D-galactofuranose adopts 1T2/1E conformations.
Collapse
Affiliation(s)
- Oznur Yeni
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, France.
| | - Abdul-Rahman Allouche
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, France.
| | - Laurent Legentil
- Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes, F-35000 Rennes, France
| | - Vincent Ferrières
- Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes, F-35000 Rennes, France
| | - Isabelle Compagnon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, France.
| |
Collapse
|
4
|
Yeni O, Ollivier S, Moge B, Ropartz D, Rogniaux H, Legentil L, Ferrières V, Compagnon I. Ring-Size Memory of Galactose-Containing MS/MS Fragments: Application to the Detection of Galactofuranose in Oligosaccharides and Their Sequencing. J Am Chem Soc 2023. [PMID: 37418616 DOI: 10.1021/jacs.3c01925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Analysis of glycans remains a difficult task due to their isomeric complexity. Despite recent progress, determining monosaccharide ring size, a type of isomerism, is still challenging due to the high flexibility of the five-membered ring (also called furanose). Galactose is a monosaccharide that can be naturally found in furanose configuration in plant and bacterial polysaccharides. In this study, we used the coupling of tandem mass spectrometry and infrared ion spectroscopy (MS/MS-IR) to investigate compounds containing galactofuranose and galactopyranose. We report the IR fingerprints of monosaccharide fragments and demonstrate for the first time galactose ring-size memory upon collision-induced dissociation (CID) conditions. The linkage of the galactose unit is further obtained by analyzing disaccharide fragments. These findings enable two possible applications. First, labeled oligosaccharide patterns can be analyzed by MS/MS-IR, yielding full sequence information, including the ring size of the galactose unit; second, MS/MS-IR can be readily applied to unlabeled oligosaccharides to rapidly identify the presence of a galactofuranose unit, as a standalone analysis or prior to further sequencing.
Collapse
Affiliation(s)
- Oznur Yeni
- CNRS, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Université de Lyon, F-69622 Lyon, France
| | - Simon Ollivier
- UR BIA, F-44316 Nantes, France; INRAE, BIBS Facility, INRAE, F-44316 Nantes, France
| | - Baptiste Moge
- CNRS, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Université de Lyon, F-69622 Lyon, France
| | - David Ropartz
- UR BIA, F-44316 Nantes, France; INRAE, BIBS Facility, INRAE, F-44316 Nantes, France
| | - Hélène Rogniaux
- UR BIA, F-44316 Nantes, France; INRAE, BIBS Facility, INRAE, F-44316 Nantes, France
| | - Laurent Legentil
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, Univ Rennes, F-35000 Rennes, France
| | - Vincent Ferrières
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, Univ Rennes, F-35000 Rennes, France
| | - Isabelle Compagnon
- CNRS, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Université de Lyon, F-69622 Lyon, France
| |
Collapse
|
5
|
Sun C, Shen X, Zhang Y, Song T, Xu L, Xiao J. Molecular Defensive Mechanism of Echinacea purpurea (L.) Moench against PAH Contaminations. Int J Mol Sci 2023; 24:11020. [PMID: 37446196 DOI: 10.3390/ijms241311020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The understanding of the molecular defensive mechanism of Echinacea purpurea (L.) Moench against polycyclic aromatic hydrocarbon (PAH) contamination plays a key role in the further improvement of phytoremediation efficiency. Here, the responses of E. purpurea to a defined mixture of phenanthrene (PHE) and pyrene (PYR) at different concentrations or a natural mixture from an oilfield site with a history of several decades were studied based on transcriptomics sequencing and widely targeted metabolomics approaches. The results showed that upon 60-day PAH exposure, the growth of E. purpurea in terms of biomass (p < 0.01) and leaf area per plant (p < 0.05) was negatively correlated with total PAH concentration and significantly reduced at high PAH level. The majority of genes were switched on and metabolites were accumulated after exposure to PHE + PYR, but a larger set of genes (3964) or metabolites (208) showed a response to a natural PAH mixture in E. purpurea. The expression of genes involved in the pathways, such as chlorophyll cycle and degradation, circadian rhythm, jasmonic acid signaling, and starch and sucrose metabolism, was remarkably regulated, enhancing the ability of E. purpurea to adapt to PAH exposure. Tightly associated with transcriptional regulation, metabolites mainly including sugars and secondary metabolites, especially those produced via the phenylpropanoid pathway, such as coumarins, flavonoids, and their derivatives, were increased to fortify the adaptation of E. purpurea to PAH contamination. These results suggest that E. purpurea has a positive defense mechanism against PAHs, which opens new avenues for the research of phytoremediation mechanism and improvement of phytoremediation efficiency via a mechanism-based strategy.
Collapse
Affiliation(s)
- Caixia Sun
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Xiangbo Shen
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Yulan Zhang
- Liaoning Province Outstanding Innovation Team, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Tianshu Song
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Lingjing Xu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Junyao Xiao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| |
Collapse
|
6
|
Zercher BP, Gozzo TA, Wageman A, Bush MF. Enhancing the Depth of Analyses with Next-Generation Ion Mobility Experiments. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:27-48. [PMID: 37000959 PMCID: PMC10545071 DOI: 10.1146/annurev-anchem-091522-031329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recent developments in ion mobility (IM) technology have expanded the capability to separate and characterize gas-phase ions of biomolecules, especially when paired with mass spectrometry. This next generation of IM technology has been ushered in by creative innovation focused on both instrument architectures and how electric fields are applied. In this review, we focus on the application of high-resolution and multidimensional IM to biomolecular analyses, encompassing the fields of glycomics, lipidomics, peptidomics, and proteomics. We highlight selected research that demonstrates the application of the new IM toolkit to challenging biomolecular systems. Through our review of recently published literature, we outline the current strengths of respective technologies and perspectives for future applications.
Collapse
Affiliation(s)
- Benjamin P Zercher
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| | - Theresa A Gozzo
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| | - AnneClaire Wageman
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| | - Matthew F Bush
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
7
|
Ollivier S, Legentil L, Yeni O, David LP, Ferrières V, Compagnon I, Rogniaux H, Ropartz D. Gas-Phase Behavior of Galactofuranosides upon Collisional Fragmentation: A Multistage High-Resolution Ion Mobility Study. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:627-639. [PMID: 36971653 DOI: 10.1021/jasms.2c00333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Carbohydrates are ubiquitous in nature but are among the least conserved biomolecules in life. These biopolymers pose a particular challenge to analytical chemists because of their high diversity and structural heterogeneity. In addition, they contain many isomerisms that complicate their structural characterization, notably by mass spectrometry. The tautomerism of the constitutive subunits is of particular interest. A given cyclized monosaccharide unit can take two forms: a most common 6-membered ring (pyranose, p) and a more flexible 5-membered ring (furanose, f). The tautomers impact the biological properties of polysaccharides, resulting in interesting properties of the derived oligosaccharides. From an analytical point of view, the impact of tautomerism on the gas-phase behavior of ions has scarcely been described in the literature. In this work, we study the behavior of Galf-containing oligosaccharides, ionized as [M+Li]+ species, under collisional dissociation (CID) conditions using high-resolution and multistage ion mobility (IMS) on a Cyclic IMS platform. In the first part of this work, we studied whether disaccharidic fragments released from Galf-containing (Gal)1(Man)2 trisaccharides (and their Galp counterpart) would match the corresponding disaccharide standards, and─despite the fragments generally being a good match─we showed the possibility of Galf migrations and other unidentified alterations in the IMS profile. Next, we expanded on these unknown features using multistage IMS and molecular dynamics, unveiling the contributions of additional gas-phase conformers in the profile of fragments from a Galf-containing trisaccharide compared with the corresponding disaccharides.
Collapse
Affiliation(s)
- Simon Ollivier
- INRAE, UR BIA, F-44316 Nantes, France
- INRAE, PROBE Research Infrastructure, BIBS Facility, F-44316 Nantes, France
| | - Laurent Legentil
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS ISCR-UMR 6226, F-35000 Rennes, France
| | - Oznur Yeni
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Louis-Philippe David
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS ISCR-UMR 6226, F-35000 Rennes, France
| | - Vincent Ferrières
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS ISCR-UMR 6226, F-35000 Rennes, France
| | - Isabelle Compagnon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Hélène Rogniaux
- INRAE, UR BIA, F-44316 Nantes, France
- INRAE, PROBE Research Infrastructure, BIBS Facility, F-44316 Nantes, France
| | - David Ropartz
- INRAE, UR BIA, F-44316 Nantes, France
- INRAE, PROBE Research Infrastructure, BIBS Facility, F-44316 Nantes, France
| |
Collapse
|
8
|
Ma S, Chen F, Zhang M, Yuan H, Ouyang G, Zhao W, Zhang S, Zhao Y. Carboxyl-Based CPMP Tag for Ultrasensitive Analysis of Disaccharides by Negative Tandem Mass Spectrometry. Anal Chem 2022; 94:9557-9563. [PMID: 35759693 DOI: 10.1021/acs.analchem.2c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we develop a sensitive method for glucose-containing disaccharide analysis by 1-(4-carboxyphenyl)-3-methyl-5-pyrazolone (CPMP) derivatization using mass spectrometry. The intense anion of [M - H]- (m/z 759) was observed for CPMP-labeled disaccharides in a negative mode. After derivatization, its sensitivity was significantly increased with the limits of detection (LODs) and limits of quantification (LOQ) ranging from 3.90 to 8.67 ng L-1 and 12.99 to 28.92 ng L-1, respectively. During CID-MS/MS analysis, the fragment patterns of CPMP derivatized disaccharides in the negative mode were simpler and clearer than their counterparts in a positive mode, which further could be applied to distinct and relatively quantitative isomeric disaccharides with ultrahigh sensitivity and good reproducibility. The great linear relationships could be achieved under wider concentration ratios from 0.01 to 20 compared to the previous report. Eventually, the developed methodology was applicable to identify isomeric disaccharides in beers. No sucrose was discovered. All beers contain 1,4- and 1,6-linked disaccharides. Some of them also have a mixture of 1,2- and 1,3-linked disaccharides. Through the integration of statistical analysis, beers with different production processes were finally discriminated, and the relative quantification of isomaltose and maltose was realized. In general, this method is sensitive, fast, and reliable for the discrimination and relative quantification of isomeric disaccharides in complex matrices. This study provides a new idea for the structural analysis of oligosaccharides in food, plants, and animals and an important theoretical basis for the exploration of new functions of oligosaccharides.
Collapse
Affiliation(s)
- Shanshan Ma
- College of Chemistry, Zhengzhou University, Henan 450001, China
| | - Fangya Chen
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China
| | - Meng Zhang
- College of Chemistry, Zhengzhou University, Henan 450001, China
| | - Hang Yuan
- College of Chemistry, Zhengzhou University, Henan 450001, China
| | - Gangfeng Ouyang
- College of Chemistry, Zhengzhou University, Henan 450001, China.,KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wuduo Zhao
- College of Chemistry, Zhengzhou University, Henan 450001, China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Henan 450001, China
| | - Yufen Zhao
- College of Chemistry, Zhengzhou University, Henan 450001, China.,Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
9
|
Greis K, Kirschbaum C, von Helden G, Pagel K. Gas-phase infrared spectroscopy of glycans and glycoconjugates. Curr Opin Struct Biol 2021; 72:194-202. [PMID: 34952241 DOI: 10.1016/j.sbi.2021.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/02/2021] [Accepted: 11/21/2021] [Indexed: 11/28/2022]
Abstract
Glycans are intrinsically complex biomolecules that pose particular analytical challenges. Standard workflows for glycan analysis are based on mass spectrometry, often coupled with separation techniques such as liquid chromatography and ion mobility spectrometry. However, this approach does not yield direct structural information and cannot always distinguish between isomers. This gap might be filled in the future by gas-phase infrared spectroscopy, which has emerged as a promising structure-sensitive technique for glycan fingerprinting. This review highlights recent applications of gas-phase infrared spectroscopy for the analysis of synthetic and biological glycans and how they can be integrated into mass spectrometry-based workflows.
Collapse
Affiliation(s)
- Kim Greis
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany; Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Carla Kirschbaum
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany; Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Gert von Helden
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Kevin Pagel
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany; Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany.
| |
Collapse
|