1
|
Zhang E, Ma D, Zhu C. Glyoxylic acid monohydrate promoted reductive addition of sodium sulfinates to pillar[4]arene[1]quinone. Org Biomol Chem 2025; 23:1146-1149. [PMID: 39692202 DOI: 10.1039/d4ob01908c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
An efficient synthesis of sulfonate esters through reductive addition of sodium sulfinates to pillar[4]arene[1]quinone has been established (15 examples). Compared to the arylsulfonylation of p-quinone with sodium arylsulfinates under other acidic conditions, this work affords the hydroquinone-type 4-O-sulfonyl derivatives by using glyoxylic acid monohydrate as a promoter. The protocol features mild reaction conditions and high selectivity and is an alternative protocol for the O-sulfonylation of pillar[4]arene[1]hydroquinone.
Collapse
Affiliation(s)
- Enfu Zhang
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang, China.
| | - Da Ma
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang, China.
| | - Chenghao Zhu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang, China.
| |
Collapse
|
2
|
Sun YH, Xi JM, Wei ZL, Liao WW. Electrochemical Sulfonylation of Indoles with Inorganic Sulfites and Alcohols: Direct Synthesis of Indole Sulfonic Esters. J Org Chem 2024; 89:18665-18670. [PMID: 39636073 DOI: 10.1021/acs.joc.4c02156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
A direct electrochemical sulfonylation between indoles, inorganic sulfites, and alcohols was developed, in which various indoyl sulfonate esters were prepared efficiently. In this transformation, the easy-handle and cost-effective inorganic sulfite was disclosed to engage in a Csp2-H sulfonylation as the SO2 source in an undivided electrolysis cell under mild conditions. In addition, the unexpected paired electrosynthesis has been achieved, owing to the dual role of inorganic sulfites, and led to a sulfonylation/reduction sequence to rapidly deliver hydroxyl substituted indole sulfonate esters.
Collapse
Affiliation(s)
- Yun-Hai Sun
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P R China
| | - Ji-Ming Xi
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P R China
| | | | - Wei-Wei Liao
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P R China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P R China
| |
Collapse
|
3
|
Wang X, Feng S, Han J, Hu Y, Ye S, Wu J. Substrate-Controlled Electrochemical Reaction of 2-Alkynylbenzamides, Inorganic Sulfites, and Alcohols. J Org Chem 2024; 89:16873-16882. [PMID: 39504407 DOI: 10.1021/acs.joc.4c02270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Isoindolones constitute a dominant structural class in synthetic and medicinal chemistry. In this research, an electrochemical reaction involving 2-alkynylbenzamides, inorganic sulfites, and alcohols was first established to provide sulfonyl ester-substituted 3-hydroxyisoindolinone derivatives in moderate to good yields with excellent functional group tolerance. When bulky aryl-substituted 2-alkynylbenzamides are utilized as substrates, sulfonyl ester-substituted 3-alkylideneisoindolinones can be selectively generated with good chemoselectivity. Alkoxysulfonyl radicals derived from the anodic oxidation of inorganic sulfite with alcohols are involved in this transformation.
Collapse
Affiliation(s)
- Xiaoman Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China
| | - Sijia Feng
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jiarui Han
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China
| | - Shengqing Ye
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
4
|
Sun R, Hu F, Jiang H, Du W, Zhang C, Chang T, Zhou Y, Wu P, Li D, Weng Y. Electrochemical-induced phosphorylation of arenols and tyrosine containing oligopeptides. iScience 2024; 27:110487. [PMID: 39314241 PMCID: PMC11418147 DOI: 10.1016/j.isci.2024.110487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/05/2024] [Accepted: 07/08/2024] [Indexed: 09/25/2024] Open
Abstract
A disclosed technique employs electrochemical dehydrogenative cross-coupling to create organophosphates, utilizing phosphites compounds with arenols. Inorganic iodide salts serve dual roles as redox catalysts and electrolytes in an undivided cell, omitting the need for external oxidants or bases. Initial mechanistic investigations indicate the reaction unfolds via an electro-oxidative radical pathway, facilitating the formation of P-O bonds, leading to the generation of oxygen radicals in the formation of acetylaminophenol. This environmentally friendly approach offers excellent tolerance to various functional groups, achieves high yields (up to 95% isolated yield), and accommodates a wide range of substrates, showcasing its utility for practical synthesis applications.
Collapse
Affiliation(s)
- Rong Sun
- Hubei Key Laboratory of Precision Manufacturing for Small-molecular Active Pharmaceutical Ingredients, School of Chemistry and Chemical Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, P.R. China
| | - Fan Hu
- Hubei Key Laboratory of Precision Manufacturing for Small-molecular Active Pharmaceutical Ingredients, School of Chemistry and Chemical Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, P.R. China
| | - Haoyang Jiang
- Hubei Key Laboratory of Precision Manufacturing for Small-molecular Active Pharmaceutical Ingredients, School of Chemistry and Chemical Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, P.R. China
| | - Wenbin Du
- Hubei Key Laboratory of Precision Manufacturing for Small-molecular Active Pharmaceutical Ingredients, School of Chemistry and Chemical Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, P.R. China
| | - Chaochao Zhang
- Hubei Key Laboratory of Precision Manufacturing for Small-molecular Active Pharmaceutical Ingredients, School of Chemistry and Chemical Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, P.R. China
| | - Tianhao Chang
- Hubei Key Laboratory of Precision Manufacturing for Small-molecular Active Pharmaceutical Ingredients, School of Chemistry and Chemical Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, P.R. China
| | - Yuling Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, P.R. China
| | - Pan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, P.R. China
| | - Dingyu Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan, P.R. China
| | - Yue Weng
- Hubei Key Laboratory of Precision Manufacturing for Small-molecular Active Pharmaceutical Ingredients, School of Chemistry and Chemical Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, P.R. China
| |
Collapse
|
5
|
Yu SW, Chen ZJ, Li HQ, Li WX, Li Y, Li Z, Wang ZY. Oxysulfonylation of Alkynes with Sodium Sulfinates to Access β-Keto Sulfones Catalyzed by BF 3·OEt 2. Molecules 2024; 29:3559. [PMID: 39124964 PMCID: PMC11314596 DOI: 10.3390/molecules29153559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
An efficient and operationally simple method for the synthesis of β-keto sulfones through the BF3·OEt2-promoted reaction of alkynes and sodium sulfinates is developed. With its facile and selective access to the targets, it features good functional group compatibility, mild conditions, easily available starting materials, and good yields. Notably, the reaction does not require metal catalysts or chemical reagents with pungent odors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhao-Yang Wang
- School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China; (S.-W.Y.); (Z.-J.C.); (H.-Q.L.); (W.-X.L.); (Y.L.); (Z.L.)
| |
Collapse
|
6
|
Zuo D, Xiao X, Ma X, Nie P, Liu L, Chen T. Highly efficient esterification of carboxylic acids with O-H nucleophiles through acid/iodide cooperative catalysis. Org Biomol Chem 2024. [PMID: 39016558 DOI: 10.1039/d4ob00910j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The esterification of carboxylic acids is an important reaction for preparing esters which find wide applications in various research fields. In this manuscript, we report an acid/iodide cooperative catalytic method which enables highly efficient esterification of carboxylic acids with a wide range of equivalent O-H nucleophiles including both alcohols and weak nucleophilic phenols. Under the reaction conditions, both aromatic and aliphatic carboxylic acids including those bearing functional groups work well, furnishing the corresponding esters in good to high yields. Moreover, this reaction is scalable and applicable to the modification of bioactive molecules. These results demonstrate the synthetic value of this new reaction in organic synthesis.
Collapse
Affiliation(s)
- Dongxu Zuo
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Xiong Xiao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Xinyue Ma
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Peng Nie
- Guizhou Institute for Food and Drug Control, 84 Shibei Road, Yunyan District, Guiyang City, Guizhou Province, 550000, China
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| |
Collapse
|
7
|
Shi SH, Li HY, Liu HY, Tian R, Zhu HT. Redox Relay-Induced C-S Radical Cross-Coupling Strategy: Application in Nontraditional Site-Selective Thiocyanation of Quinoxalinones. J Org Chem 2024; 89:6826-6837. [PMID: 38669146 DOI: 10.1021/acs.joc.4c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Oxidative cross-coupling is a powerful strategy to form C-heteroatom bonds. However, oxidative cross-coupling for constructing C-S bond is still a challenge due to sulfur overoxidation and poisoning transition-metal catalysts. Now, electrochemical redox relay using sulfur radicals formed in situ from inorganic sulfur source offers a solution to this problem. Herein, electrochemical redox relay-induced C-S radical cross-coupling of quinoxalinones and ammonium thiocyanate with bromine anion as mediator is presented. The electrochemical redox relay comprised initially the formation of sulfur radical via indirect electrochemical oxidation, simultaneous electrochemical reduction of the imine bond, electro-oxidation-triggered radical coupling involving dearomatization-rearomatization, and the reformation of the imine bond through anodic oxidation. Applying this strategy, various quinoxalinones bearing multifarious electron-deficient/-rich substituents at different positions were well compatible with moderate to excellent yields and good steric hindrance compatibility under constant current conditions in an undivided cell without transition-metal catalysts and additional redox reagents. Synthetic applications of this methodology were demonstrated through gram-scale preparation and follow-up transformation. Notably, such a unique strategy may offer new opportunities for the development of new quinoxalinone-core leads.
Collapse
Affiliation(s)
- Shi-Hui Shi
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Hao-Yu Li
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Hao-Yang Liu
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Rui Tian
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Hai-Tao Zhu
- Shannxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| |
Collapse
|
8
|
Liu F, Sohail A, Ablajan K. Metal-Free Oxidative Formation of Aryl Esters by Catalytic Coupling of Acyl and Sulfonyl Chlorides with Arylboronic Acids. J Org Chem 2024; 89:27-33. [PMID: 38096383 DOI: 10.1021/acs.joc.3c01151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A practical and efficient synthesis of aryl esters was developed through metal-free oxidation. This reaction employs stable and readily available acyl or sulfonyl chlorides and arylboronic acids as the starting materials and proceeds under mild reaction conditions without additional precious metal catalysts. This new strategy exhibits broad substrate tolerance and operational simplicity and gives diverse aryl esters in moderate to high yields.
Collapse
Affiliation(s)
- Fang Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Akbar Sohail
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Keyume Ablajan
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| |
Collapse
|
9
|
Korivi R, Madasamy K, Sureshbabu P, Mannathan S. Convenient Synthesis of Salicylanilide Sulfonates from 1,2,3-Benzotriazin-4(3 H)-ones and Organosulfonic Acids via Denitrogenative Cross-Coupling. ACS OMEGA 2023; 8:18306-18311. [PMID: 37251178 PMCID: PMC10210227 DOI: 10.1021/acsomega.3c02165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023]
Abstract
An efficient and straightforward approach to synthesize salicylanilide aryl and alkyl sulfonates from 1,2,3-benzotriazin-4(3H)-ones and organosulfonic acids is described. This protocol is operationally simple and scalable, exhibits a broad substrate scope with high functional group tolerance, and affords the desired products in good to high yield. Application of the reaction is also demonstrated by converting the desired product to synthetically useful salicylamides in high yields.
Collapse
|
10
|
Li Q, Zhu H, Liu Y, Yang L, Fan Q, Xie Z, Le ZG. Copper-assisted preparation of pyridinyl sulfonate esters from hydroxypyridines and sodium sulfinates. RSC Adv 2022; 12:2736-2740. [PMID: 35425336 PMCID: PMC8979058 DOI: 10.1039/d1ra08568a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/26/2021] [Indexed: 11/21/2022] Open
Abstract
An efficient and powerful copper-assisted method for the effective conversion of a broad range of hydroxypyridines and sodium sulfinates into their corresponding pyridinyl tosylates was developed. Key features of this base- and ligand-free protocol include using the cheap and readily available CuBr2 as a medium and the use of sodium sulfinates as formal sulfonylation reagents. A variety of functional pyridinyl tosylates could be formed with good yields, which can easily be converted into C-C and C-N bond-containing compounds.
Collapse
Affiliation(s)
- Qian Li
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology 330013 Nanchang China
| | - Haibo Zhu
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology 330013 Nanchang China
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology Nanchang 330013 China
| | - Yishuai Liu
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology 330013 Nanchang China
| | - Liu Yang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology 330013 Nanchang China
| | - Qiangwen Fan
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology 330013 Nanchang China
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology Nanchang 330013 China
| | - Zongbo Xie
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology 330013 Nanchang China
| | - Zhang-Gao Le
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology 330013 Nanchang China
| |
Collapse
|
11
|
Shi SH, Wei J, Liang CM, Bai H, Zhu HT, Zhang Y, Fu F. Electro-oxidation induced O–S cross-coupling of quinoxalinones with sodium sulfinates for synthesizing 2-sulfonyloxylated quinoxalines. Chem Commun (Camb) 2022; 58:12357-12360. [DOI: 10.1039/d2cc04524a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel C2–O sulfonylation of quinoxalinones via electro-oxidation induced O–S coupling strategy under mild conditions was reported.
Collapse
Affiliation(s)
- Shi-Hui Shi
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, Shaanxi, China
| | - Jian Wei
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Chun-Miao Liang
- Shannxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Huan Bai
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, Shaanxi, China
| | - Hai-Tao Zhu
- Shannxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Yantu Zhang
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, Shaanxi, China
| | - Feng Fu
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, Shaanxi, China
| |
Collapse
|
12
|
Zhaoxin W, Renjie W, Yonghong Z, Bin W, Yu X, Weiwei J, Chenjiang L. Electrochemical Synthesis of N-Acyl/Sulfonylsulfenamides Using Potassium Iodide as Mediator. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202205026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Fu Z, Yang Z, Sun L, Yin J, Yi X, Cai H, Lei A. Electrochemical Synthesis of Aryl Sulfonates from Sodium Sulfinates and Phenols under Metal-Free Conditions. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202107060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Gu Q, Wang X, Liu X, Wu G, Xie Y, Shao Y, Zhao Y, Zeng X. Electrochemical sulfonylation of enamides with sodium sulfinates to access β-amidovinyl sulfones. Org Biomol Chem 2021; 19:8295-8300. [PMID: 34519742 DOI: 10.1039/d1ob01485d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrochemical sulfonylation of enamides with sodium sulfinates was developed in an undivided cell in constant current mode, leading to the formation of β-amidovinyl sulfones in moderate to good yields. The catalyst-, electrolyte- and oxidant-free protocol features good functional group tolerance and employs electric current as a green oxidant. Mechanistic insights into the reaction indicate that the reaction may proceed via a radical mechanism.
Collapse
Affiliation(s)
- Qingyun Gu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Xin Wang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Xinyi Liu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Guixia Wu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Yushan Xie
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Yu Shao
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Yu Zhao
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Xiaobao Zeng
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| |
Collapse
|