1
|
Zhou L, Cai X, Wang Y, Yang J, Wang Y, Deng J, Ye D, Zhang L, Liu Y, Ma S. Chemistry and biology of natural stilbenes: an update. Nat Prod Rep 2025; 42:359-405. [PMID: 39711130 DOI: 10.1039/d4np00033a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Covering: 2009 up to the end of 2023Stilbenes, an emblematic group of polyphenols, have attracted the attention of numerous researchers owing to their intriguing polycyclic architectures and diverse bioactivities. In this updated review, natural stilbenes were analysed, especially oligomeric stilbenes, which are an emblematic group of polyphenols that harbor intriguing polycyclic architectures and diverse bioactivities compared with those previously anticipated. Oligomeric stilbenes with unique skeletons comprise a large majority of natural stilbenes owing to their structural changes and different substitutions on the phenyl rings. These compounds can be promising sources of lead compounds for studying new drugs and medicines. In addition, the exploration of unusual structures of oligomeric stilbenes such as polyflavanostilbenes A and B, analysing their absolute stereochemistry, and improving their yield using synthetic biology methods have recently gained interest. This review provides a systematic overview of 409 new stilbenes, which were isolated and identified over time from January 2009 to December 2023, focusing on the classification and biomimetic syntheses of oligomeric stilbenes, in addition to presenting meaningful insights into their structural diversity and biological activities, which will inspire further investigations of biological activities, structure-activity relationships, and screening of drug candidates.
Collapse
Affiliation(s)
- Lipeng Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Xinyu Cai
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Jianbo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Yadan Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Jialing Deng
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Danni Ye
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Lanzhen Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Yue Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Shuangcheng Ma
- Chinese Pharmacopoeia Commission, Beijing 100061, China.
| |
Collapse
|
2
|
Gaucherand A, Yen-Pon E, Domain A, Bourhis A, Rodriguez J, Bonne D. Enantioselective synthesis of molecules with multiple stereogenic elements. Chem Soc Rev 2024; 53:11165-11206. [PMID: 39344998 DOI: 10.1039/d3cs00238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
This review explores the fascinating world of molecules featuring multiple stereogenic elements, unraveling the different strategies designed over the years for their enantioselective synthesis. Specifically, (dynamic) kinetic resolutions, desymmetrisations and simultaneous installation of stereogenic elements exploiting either metal- or organo-catalysis are the principal approaches to efficiently create and control the three-dimensional shapes of these attractive molecules. Although most molecules presented in this review possess a stereogenic carbon atom in combination with a stereogenic axis, other combinations with helices or planes of chirality have started to emerge, as well as molecules displaying more than two different stereogenic elements.
Collapse
Affiliation(s)
| | | | - Antoine Domain
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| | - Alix Bourhis
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| | - Jean Rodriguez
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| | - Damien Bonne
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| |
Collapse
|
3
|
Zhou Y, Yao Z, Lin Y, Zhang H. From Tyrosine Kinases to Tyrosine Phosphatases: New Therapeutic Targets in Cancers and Beyond. Pharmaceutics 2024; 16:888. [PMID: 39065585 PMCID: PMC11279542 DOI: 10.3390/pharmaceutics16070888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) regulate the level of tyrosine phosphorylation in proteins. PTKs are key enzymes that catalyze the transfer of an ATP phosphoric acid to a tyrosine residue on target protein substrates. Protein tyrosine phosphatases (PTPs) are responsible for the dephosphorylation of tyrosine residues and play a role in countering PTK overactivity. As widespread oncogenes, PTKs were once considered to be promising targets for therapy. However, tyrosine kinase inhibitors (TKIs) now face a number of challenges, including drug resistance and toxic side effects. Treatment strategies now need to be developed from a new perspective. In this review, we assess the current state of TKIs and highlight the role of PTPs in cancer and other diseases. With the advances of allosteric inhibition and the development of multiple alternative proprietary drug strategies, the reputation of PTPs as "undruggable" targets has been overturned, and they are now considered viable therapeutic targets. We also discuss the strategies and prospects of PTP-targeted therapy, as well as its future development.
Collapse
Affiliation(s)
- Yu Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
| | - Zhimeng Yao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
- Department of Urology Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510660, China
| | - Yusheng Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510660, China
| | - Hao Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
- Department of Pathology, Gongli Hospital of Shanghai Pudong New Area, Shanghai 200135, China
- Zhuhai Institute of Jinan University, Zhuhai 511436, China
| |
Collapse
|
4
|
Đorđević Zlatković MR, Radulović NS, Dangalov M, Vassilev NG. Conformation Analysis and Stereodynamics of Symmetrically ortho-Disubstituted Carvacrol Derivatives. Molecules 2024; 29:1962. [PMID: 38731453 PMCID: PMC11085911 DOI: 10.3390/molecules29091962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
The design and synthesis of analogs of natural products can be a valuable source of medicinal preparations for the pharmaceutical industry. In the present study, the structural elucidation of eleven derivatives of 2,4-dihalogeno substituted synthetic analogues of the natural compound carvacrol was carried out by means of NMR experiments, and of another thirteen by DFT calculations. By selective NOE experiments and the irradiation of CH signals of the isopropyl group, individual conformers were assigned as syn and anti. By comparing GIAO/B3LYP/6-311++G(d,p)-calculated and experimentally measured vicinal 3JCH spin-spin constants, this assignment was confirmed. An unusual relationship is reported for proton-carbon vicinal couplings: 3JCH (180°) < 3JCH (0°). The conformational mobility of carvacrols was studied by 2D EXSY spectra. The application of homonuclear decoupling technique (HOBS) to these spectra simplifies the spectra, improves resolution without reducing the sensitivity, and allows a systematic examination of the rotational barrier of all compounds via their CH signals of the isopropyl group in a wider temperature interval. The rate constants of the isopropyl rotation between syn and anti conformers were determined and the corresponding energy barriers (14-17 kcal/mol) were calculated. DFT calculations of the energy barriers in carvacrol derivatives allowed the determination of the steric origin of the restricted isopropyl rotation. The barrier height depends on the size of the 2- and 4-position substituents, and is independent of the derivatization of the OH group.
Collapse
Affiliation(s)
| | - Niko S. Radulović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia;
| | - Miroslav Dangalov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev Str. Bl. 9, 1113 Sofia, Bulgaria;
| | - Nikolay G. Vassilev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev Str. Bl. 9, 1113 Sofia, Bulgaria;
| |
Collapse
|
5
|
Li ZW, Fan CL, Sun B, Huang L, Wang ZQ, Huang XJ, Zhang SQ, Ye WC, Wu ZL, Zhang XQ. Discovery of Unusual Ajmaline-Macroline Type Bisindole Alkaloids from Alstonia macrophylla by Building Blocks-Based Molecular Networking. Chemistry 2024; 30:e202303519. [PMID: 38018776 DOI: 10.1002/chem.202303519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
Three unusual ajmaline-macroline type bisindole alkaloids, alsmaphylines A-C, together with their postulated biogenetic precursors, were isolated from the stem barks and leaves of Alstonia macrophylla via the building blocks-based molecular network (BBMN) strategy. Alsmaphyline A represents a rare ajmaline-macroline type bisindole alkaloid with an S-shape polycyclic ring system. Alsmaphylines B and C are two novel ajmaline-macroline type bisindole alkaloids with N-1-C-21' linkages, and the former possesses an unconventional stacked conformation due to the presence of intramolecular noncovalent interactions. The chemical structures including absolute configurations of alsmaphylines A-C were established by comprehensive spectroscopic analyses, electronic circular dichroism (ECD) calculations, and single-crystal X-ray crystallography. In addition, a plausible biosynthetic pathway of these bisindole alkaloids as well as their ability to promote the protein synthesis on HT22 cells were discussed.
Collapse
Affiliation(s)
- Zi-Wei Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, P.R. China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, P.R. China
- Guangdong Provincial Engineering Research Center for Modernization of TCM, College of Pharmacy, Jinan University, Guangzhou, 510632, P.R. China
| | - Chun-Lin Fan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, P.R. China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, P.R. China
- Guangdong Provincial Engineering Research Center for Modernization of TCM, College of Pharmacy, Jinan University, Guangzhou, 510632, P.R. China
| | - Biao Sun
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, P.R. China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, P.R. China
- Guangdong Provincial Engineering Research Center for Modernization of TCM, College of Pharmacy, Jinan University, Guangzhou, 510632, P.R. China
| | - Lan Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, P.R. China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, P.R. China
- Guangdong Provincial Engineering Research Center for Modernization of TCM, College of Pharmacy, Jinan University, Guangzhou, 510632, P.R. China
| | - Zi-Qi Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, P.R. China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, P.R. China
- Guangdong Provincial Engineering Research Center for Modernization of TCM, College of Pharmacy, Jinan University, Guangzhou, 510632, P.R. China
| | - Xiao-Jun Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, P.R. China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, P.R. China
- Guangdong Provincial Engineering Research Center for Modernization of TCM, College of Pharmacy, Jinan University, Guangzhou, 510632, P.R. China
| | - Shi-Qing Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, P.R. China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, P.R. China
- Guangdong Provincial Engineering Research Center for Modernization of TCM, College of Pharmacy, Jinan University, Guangzhou, 510632, P.R. China
| | - Wen-Cai Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, P.R. China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, P.R. China
- Guangdong Provincial Engineering Research Center for Modernization of TCM, College of Pharmacy, Jinan University, Guangzhou, 510632, P.R. China
| | - Zhen-Long Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, P.R. China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, P.R. China
- Guangdong Provincial Engineering Research Center for Modernization of TCM, College of Pharmacy, Jinan University, Guangzhou, 510632, P.R. China
| | - Xiao-Qi Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, P.R. China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, P.R. China
- Guangdong Provincial Engineering Research Center for Modernization of TCM, College of Pharmacy, Jinan University, Guangzhou, 510632, P.R. China
| |
Collapse
|
6
|
Chen JY, Lian X, Fan YW, Ao ZY, Zhang WJ, Pan YC, Chen LP, Yuan J, Wu JW. Four new stilbenes and one new flavonoid with potential antibacterial and anti-SARS-CoV-2 activity from Cajanus cajan. J Nat Med 2023; 77:858-866. [PMID: 37462863 DOI: 10.1007/s11418-023-01727-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/21/2023] [Indexed: 08/31/2023]
Abstract
Four new stilbenes (1-4) and one new flavonoid (5), named cajanines D-H, together with three known stilbenes (6-8) were isolated from the leaves of Cajanus cajan (L.) Millsp. (pigeon pea). The structures of these compounds were elucidated unambiguously on the basis of IR, 1D, and 2D NMR, as well as HRESIMS data. Structurally, stilbenes 1-4 bore an isopentyl side chain, and further hydroxylation of compounds 1-3 generated a greater variety of structural forms. Compound 5 was a flavonoid owning an isopentyl side chain. Besides, antibacterial activity of the isolated compounds against Staphylococcus aureus, Bacillus cereus, and Escherichia coli was studied in vitro. Compounds 1-8 were endowed with profound antibacterial activity. Among them, the MIC values of compounds 4, 6, and 7 against S. aureus were 1.56, 0.78, and 0.78 µg/mL, respectively, among which 6 and 7 had better antibacterial activity than the positive control Vancomycin with the MIC values of 1.56 µg/mL. Additionally, the anti-SARS-CoV-2 main protease activity of all the isolated compounds was evaluated, and it was worth mentioning that the IC50 values of compounds 5-7 were 8.27, 4.65, and 8.30 µM, respectively, being comparable to the positive control Ebselen. Our findings may provide valuable guidance for the application of stilbenes as lead compounds in the future for the development of drugs with antibacterial or anti-COVID-19 activity.
Collapse
Affiliation(s)
- Jia-Yan Chen
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Xin Lian
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Yu-Wen Fan
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Zhuo-Yi Ao
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Wei-Jie Zhang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Yong-Chen Pan
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Li-Ping Chen
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Jie Yuan
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| | - Jie-Wei Wu
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
7
|
Rao L, Su Y, He Q, Ye J, Liu Y, Fan Y, Hu F, Zhou Z, Gan L, Zhang Y, Zhang C. Geranylated or prenylated flavonoids from Cajanus volubilis. Chin J Nat Med 2023; 21:292-297. [PMID: 37120247 DOI: 10.1016/s1875-5364(23)60437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Indexed: 05/01/2023]
Abstract
Five new flavonoid derivatives, cajavolubones A-E (1-5), along with six known analogues (6-11) were isolated from Cajanus volubilis, and their structures were elucidated by spectroscopic analysis and quantum chemical calculations. Cajavolubones A and B (1 and 2) were identified as two geranylated chalcones. Cajavolubone C (3) was a prenylated flavone, while cajavolubones D and E (4 and 5) were two prenylated isoflavanones. Compounds 3, 8, 9 and 11 displayed cytotoxicity against HCT-116 cancer cell line.
Collapse
Affiliation(s)
- Li Rao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yu Su
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Qian He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jia Ye
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yu Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yue Fan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Feng Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Zhen Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Lishe Gan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Yonghui Zhang
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, Chongqing 404120, China.
| | - Chuanrui Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
8
|
Liu Z, Gao H, Zhao Z, Huang M, Wang S, Zhan J. Status of research on natural protein tyrosine phosphatase 1B inhibitors as potential antidiabetic agents: Update. Biomed Pharmacother 2023; 157:113990. [PMID: 36459712 DOI: 10.1016/j.biopha.2022.113990] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/29/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a crucial therapeutic target for multiple human diseases comprising type 2 diabetes (T2DM) and obesity because it is a seminal part of a negative regulator in both insulin and leptin signaling pathways. PTP1B inhibitors increase insulin receptor sensitivity and have the ability to cure insulin resistance-related diseases. However, the few PTP1B inhibitors that entered the clinic (Ertiprotafib, ISIS-113715, Trodusquemine, and JTT-551) were discontinued due to side effects or low selectivity. Molecules with broad chemical diversity extracted from natural products have been reported to be potent PTP1B inhibitors with few side effects. This article summarizes the recent PTP1B inhibitors extracted from natural products, clarifying the current research progress, and providing new options for designing new and effective PTP1B inhibitors.
Collapse
Affiliation(s)
- Zhenyang Liu
- School of Life Science, Ludong University, Yantai, Shandong 264025, China
| | - Hongwei Gao
- School of Life Science, Ludong University, Yantai, Shandong 264025, China.
| | - Ziyu Zhao
- School of Life Science, Ludong University, Yantai, Shandong 264025, China
| | - Mengrui Huang
- School of Life Science, Ludong University, Yantai, Shandong 264025, China
| | - Shengnan Wang
- School of Life Science, Ludong University, Yantai, Shandong 264025, China
| | - Jiuyu Zhan
- School of Life Science, Ludong University, Yantai, Shandong 264025, China.
| |
Collapse
|
9
|
Tan LX, Xia TQ, He QF, Tang W, Huang XJ, Song QY, Li YL, Ye WC, Wang Y, Wu ZL. Stilbenes from the leaves of Cajanus cajan and their in vitro anti-inflammatory activities. Fitoterapia 2022; 160:105229. [PMID: 35662649 DOI: 10.1016/j.fitote.2022.105229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/28/2022] [Accepted: 05/28/2022] [Indexed: 11/18/2022]
Abstract
Eighteen stilbenes (1-18), including six previously undescribed ones (1-6), with diverse modification patterns were isolated from the leaves of edible and medicinal plant Cajanus cajan. Among the new isolates, compounds 1-3 were initially obtained as three racemic mixtures, which were further resolved into three pairs of optically pure enantiomers, respectively, by chiral HPLC. Besides, compounds 8, 10, 11, and 18 were obtained from C. cajan for the first time. The chemical structures and absolute configurations of the new stilbenes were elucidated unambiguously on the basis of extensive spectroscopic analyses, single crystal X-ray crystallographic study, and quantum chemical electronic circular dichroism (ECD) calculations. In addition, the in vitro anti-inflammatory activities of all isolated stilbenes were evaluated. Compounds 2, 9, 10, 11, and 14 exerted moderate suppression of nitric oxide (NO) secretion in lipopolysaccharide (LPS)-induced RAW264.7 cells without exhibiting substantial cytotoxicity.
Collapse
Affiliation(s)
- Ling-Xuan Tan
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Tian-Qi Xia
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Qi-Fang He
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wei Tang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xiao-Jun Huang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Qiao-Yun Song
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Yao-Lan Li
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wen-Cai Ye
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China.
| | - Ying Wang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China.
| | - Zhen-Long Wu
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China.
| |
Collapse
|
10
|
Selecting one out of six stereoisomers. Nat Catal 2021. [DOI: 10.1038/s41929-021-00639-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|