1
|
Patrick S, Bull JA, Miller PW, Crimmin MR. A Continuous Flow Process for the Defluorosilylation of HFC-23 and HFO-1234yf. Org Lett 2024; 26:8605-8609. [PMID: 39352945 PMCID: PMC11474948 DOI: 10.1021/acs.orglett.4c03274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
A continuous flow process has been developed for the defluorosilylation of trifluoromethane (HFC-23) and 2,3,3,3-tetrafluoropropene (HFO-1234yf) through reaction with lithium silanide reagents under inert conditions. Design of experiment optimization improved process conditions, including productivity, yields, reduction of solvent use, and gas destruction. The small chain fluorinated organosilane products R3SiCF2H and R3SiCH2C(F)═CF2 were competent nucleophiles in the fluoride-catalyzed difluoromethylation of aldehydes, and trifluoroallylation of aldehydes, ketones, and imines.
Collapse
Affiliation(s)
- Sarah
L. Patrick
- Department of Chemistry, Molecular
Sciences Research Hub, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, U.K.
| | - James A. Bull
- Department of Chemistry, Molecular
Sciences Research Hub, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, U.K.
| | - Philip W. Miller
- Department of Chemistry, Molecular
Sciences Research Hub, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, U.K.
| | - Mark R. Crimmin
- Department of Chemistry, Molecular
Sciences Research Hub, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, U.K.
| |
Collapse
|
2
|
Kawai K, Kato Y, Araki T, Ikawa S, Usui M, Hoshiya N, Kishikawa Y, Escorihuela J, Shibata N. Halo-perfluoroalkoxylation of gem-difluoroalkenes with short-lived alkali metal perfluoroalkoxides in triglyme. Chem Sci 2024; 15:9574-9581. [PMID: 38939153 PMCID: PMC11205273 DOI: 10.1039/d4sc02084g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/16/2024] [Indexed: 06/29/2024] Open
Abstract
Alkali metal alkoxides play a pivotal role in nucleophilic alkoxylation reactions, offering pathways for the synthesis of ethers, including the increasingly sought-after trifluoromethyl ethers. However, the synthesis of long-chain perfluoroalkyl ethers remains a substantial challenge in this field. Through the innovative use of triglyme to encapsulate potassium ions, we enhanced the stability of short-lived, longer-chain perfluoroalkoxy anions, thereby facilitating efficient nucleophilic perfluoroalkoxylation reactions. This method provides a new precedent for the halo-perfluoroalkoxylation of gem-difluoroalkenes and offers a versatile tool for the design of perfluoroalkyl ethers, including those containing complex moieties of heterocycles and drug molecules. We also demonstrated the utility of the resulting halo-perfluoroalkoxyl adducts through various chemical transformations to valuable diverse perfluoroalkyl ethers.
Collapse
Affiliation(s)
- Koki Kawai
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Yoshimitsu Kato
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Taichi Araki
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Sota Ikawa
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Mai Usui
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Naoyuki Hoshiya
- Technology Innovation Center, DAIKIN Industries, Ltd 1-1 Nishi-Hitotsuya, Settsu Osaka 566-8585 Japan
| | - Yosuke Kishikawa
- Technology Innovation Center, DAIKIN Industries, Ltd 1-1 Nishi-Hitotsuya, Settsu Osaka 566-8585 Japan
| | - Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València Avda. Vicente Andrés Estellés S/N, Burjassot 46100 Valencia Spain
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| |
Collapse
|
3
|
Sumii Y, Shibata N. Current State of Microflow Trifluoromethylation Reactions. CHEM REC 2023; 23:e202300117. [PMID: 37309300 DOI: 10.1002/tcr.202300117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/25/2023] [Indexed: 06/14/2023]
Abstract
The trifluoromethyl group is a powerful structural motif in drugs and polymers; thus, developing trifluoromethylation reactions is an important area of research in organic chemistry. Over the past few decades, significant progress has been made in developing new methods for the trifluoromethylation of organic molecules, ranging from nucleophilic and electrophilic approaches to transition-metal catalysis, photocatalysis, and electrolytic reactions. While these reactions were initially developed in batch systems, more recent microflow versions are highly attractive for industrial applications owing to their scalability, safety, and time efficiency. In this review, we discuss the current state of microflow trifluoromethylation. Approaches for microflow trifluoromethylation based on different trifluoromethylation reagents are described, including continuous flow, flow photochemical, microfluidic electrochemical reactions, and large-scale microflow reactions.
Collapse
Affiliation(s)
- Yuji Sumii
- Department of Engineering, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya, 466-8555, Japan
| | - Norio Shibata
- Department of Engineering, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya, 466-8555, Japan
- Department of Nanopharmaceutical Sciences, Department of Engineering, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya, 466-8555, Japan
| |
Collapse
|
4
|
Karuo Y, Tarui A, Sato K, Kawai K, Omote M. Reactions Using Freons and Halothane as Halofluoroalkyl/Halofluoroalkenyl Building Blocks. CHEM REC 2023; 23:e202300029. [PMID: 37017496 DOI: 10.1002/tcr.202300029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/15/2023] [Indexed: 04/06/2023]
Abstract
In recent years, hydrofluorocarbon compounds such as chlorofluorocarbons, hydrochlorofluorocarbons, and 2-bromo-2-chloro-1,1,1-trifluoroethane (halothane) have been used as fluorine-containing building blocks to construct functional fluorine-containing compounds, e. g., polymers, liquid crystals, and medicines. Hydrofluorocarbons promote the formation of reactive fluoroalkyl or fluoroalkenyl species via anionic or radical processes, and these species can act as nucleophiles or electrophiles depending on the reaction conditions. Progress in fluorine chemistry using hydrofluorocarbons in the last 30 years is described in this review and diverse reactions are discussed, including the fluoroalkyl/alkenyl products and proposed mechanisms involved.
Collapse
Affiliation(s)
- Yukiko Karuo
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Atushi Tarui
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Kazuyuki Sato
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Kentaro Kawai
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Masaaki Omote
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| |
Collapse
|
5
|
Zhou J, Zhao Z, Shibata N. Transition-metal-free silylboronate-mediated cross-couplings of organic fluorides with amines. Nat Commun 2023; 14:1847. [PMID: 37012229 PMCID: PMC10070422 DOI: 10.1038/s41467-023-37466-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
C-N bond cross-couplings are fundamental in the field of organic chemistry. Herein, silylboronate-mediated selective defluorinative cross-coupling of organic fluorides with secondary amines via a transition-metal-free strategy is disclosed. The cooperation of silylboronate and potassium tert-butoxide enables the room-temperature cross-coupling of C-F and N-H bonds, effectively avoiding the high barriers associated with thermally induced SN2 or SN1 amination. The significant advantage of this transformation is the selective activation of the C-F bond of the organic fluoride by silylboronate without affecting potentially cleavable C-O, C-Cl, heteroaryl C-H, or C-N bonds and CF3 groups. Tertiary amines with aromatic, heteroaromatic, and/or aliphatic groups were efficiently synthesized in a single step using electronically and sterically varying organic fluorides and N-alkylanilines or secondary amines. The protocol is extended to the late-stage syntheses of drug candidates, including their deuterium-labeled analogs.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| | - Zhengyu Zhao
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan.
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan.
| |
Collapse
|
6
|
Luo Z, Cahard D, Tsui GC. Using Fluoroform in Trifluoromethylation Reactions. J Fluor Chem 2023. [DOI: 10.1016/j.jfluchem.2023.110092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
7
|
Sumii Y, Iwasaki H, Fujihira Y, Mahmoud EM, Adachi H, Kagawa T, Cahard D, Shibata N. KHMDS/Triglyme Cryptate as an Alternative to Phosphazene Base in Stereodivergent Pentafluoroethylation of N-Sulfinylimines Using HFC-125. J Org Chem 2022; 87:15806-15819. [PMID: 36315641 DOI: 10.1021/acs.joc.2c01821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
A protocol for the stereodivergent pentafluoroethylation of N-sulfinylimines using HFC-125 with KHMDS/triglyme has been developed. Both diastereomers of the pentafluoroethylated amines can be selectively synthesized based on the presence or absence of triglyme. This additive-controlled protocol allows the KHMDS/triglyme cryptate to be a straightforward and cheap alternative to previously reported base-controlled stereodivergent trifluoromethylation using potassium hexamethyldisilazide (KHMDS) versus P4-tBu.
Collapse
Affiliation(s)
- Yuji Sumii
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| | - Hiroto Iwasaki
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| | - Yamato Fujihira
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| | - Elsayed M Mahmoud
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan.,Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Hiroaki Adachi
- Tosoh Finechem Corporation, 4988, Kaiseicho, Shunan 746-0006, Japan
| | - Takumi Kagawa
- Tosoh Finechem Corporation, 4988, Kaiseicho, Shunan 746-0006, Japan
| | - Dominique Cahard
- CNRS UMR 6014 COBRA, Normandie Université, 76821 Mont Saint Aignan, France
| | - Norio Shibata
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan.,Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| |
Collapse
|
8
|
Jóźwiak M, Komudzińska M, Tyczyńska M, Marczak W, Jóźwiak A. Heat capacity of six glymes in N,N-dimethylformamide + water mixtures. Solvation of glymes. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Mestre J, Bernús M, Castillón S, Boutureira O. Electrophilic Reagents for the Direct Incorporation of Uncommon SCF 2CF 2H and SCF 2CF 3 Motifs. J Org Chem 2022; 87:10791-10806. [PMID: 35944166 PMCID: PMC9400389 DOI: 10.1021/acs.joc.2c01038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 12/05/2022]
Abstract
The introduction of fluoroalkylthioether groups has attracted the attention of the drug-discovery community given the special physicochemical and pharmacokinetic features they confer to bioactive compounds, yet these are often limited to standard SCF3 and SCF2H moieties. Herein, two saccharin-based electrophilic reagents have been disclosed for the incorporation of uncommon SCF2CF2H and SCF2CF3 motifs. Their reactivity performance, multigram-scale preparation, and divergent derivatization have been thoroughly investigated with a variety of nucleophiles, including natural products and pharmaceuticals.
Collapse
Affiliation(s)
| | | | - Sergio Castillón
- Departament de Química
Analítica i Química Orgànica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Omar Boutureira
- Departament de Química
Analítica i Química Orgànica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, 43007 Tarragona, Spain
| |
Collapse
|
10
|
Fujihira Y, Iwasaki H, Sumii Y, Adachi H, Kagawa T, Shibata N. Continuous-Flow Synthesis of Perfluoroalkyl Ketones via Perfluoroalkylation of Esters Using HFC-23 and HFC-125 under a KHMDS–Triglyme System. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yamato Fujihira
- Department of Engineering, Life Science and Applied Chemistry Program, Nagoya Institute of Technology, Gokiso-cho, Showa-Ku, Nagoya 466-8555, Japan
| | - Hiroto Iwasaki
- Department of Engineering, Life Science and Applied Chemistry Program, Nagoya Institute of Technology, Gokiso-cho, Showa-Ku, Nagoya 466-8555, Japan
| | - Yuji Sumii
- Department of Engineering, Life Science and Applied Chemistry Program, Nagoya Institute of Technology, Gokiso-cho, Showa-Ku, Nagoya 466-8555, Japan
| | - Hiroaki Adachi
- Tosoh Finechem Corporation, 4988, Kaiseicho, Shunan, 746-0006, Japan
| | - Takumi Kagawa
- Tosoh Finechem Corporation, 4988, Kaiseicho, Shunan, 746-0006, Japan
| | - Norio Shibata
- Department of Engineering, Life Science and Applied Chemistry Program, Nagoya Institute of Technology, Gokiso-cho, Showa-Ku, Nagoya 466-8555, Japan
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso-cho, Showa-Ku, Nagoya 466-8555, Japan
| |
Collapse
|
11
|
Sheldon DJ, Crimmin MR. Repurposing of F-gases: challenges and opportunities in fluorine chemistry. Chem Soc Rev 2022; 51:4977-4995. [PMID: 35616085 PMCID: PMC9207706 DOI: 10.1039/d1cs01072g] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 11/24/2022]
Abstract
Fluorinated gases (F-gases) are routinely employed as refrigerants, blowing agents, and electrical insulators. These volatile compounds are potent greenhouse gases and consequently their release to the environment creates a significant contribution to global warming. This review article seeks to summarise: (i) the current applications of F-gases, (ii) the environmental issues caused by F-gases, (iii) current methods of destruction of F-gases and (iv) recent work in the field towards the chemical repurposing of F-gases. There is a great opportunity to tackle the environmental and sustainability issues created by F-gases by developing reactions that repurpose these molecules.
Collapse
Affiliation(s)
- Daniel J Sheldon
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, UK.
| | - Mark R Crimmin
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, UK.
| |
Collapse
|
12
|
Komudzińska M, Jóźwiak M, Tyczyńska M, Burakowski A, Gliński J. The volume properties of selected glymes in N,N-dimethylformamide + water mixtures. The hydrophobic hydration process of glymes. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Ono M, Sumii Y, Fujihira Y, Kagawa T, Mimura H, Shibata N. Pentafluoroethylation of Carbonyl Compounds Using HFC-125 in a Flow Microreactor System. J Org Chem 2021; 86:14044-14053. [PMID: 34060312 DOI: 10.1021/acs.joc.1c00728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The protocol of micro-flow nucleophilic pentafluoroethylation using pentafluoroethane (HC2F5, HFC-125), a nontoxic, inexpensive, and commercially available greenhouse gas, is described. The micro-flow pentafluoroethylation by HFC-125 proceeded smoothly at room temperature or at -10 °C in DMF or toluene in the presence of a potassium base, namely, t-BuOK or KHMDS. A broad range of ketones, aldehydes, and chalcones with various substituted benzene rings were successfully converted to the corresponding pentafluoroethyl carbinols instantly with good to high yields.
Collapse
Affiliation(s)
- Makoto Ono
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| | - Yuji Sumii
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| | - Yamato Fujihira
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| | - Takumi Kagawa
- Tosoh Finechem Corporation, 4988, Kaiseicho, Shunan 746-0006, Japan
| | - Hideyuki Mimura
- Tosoh Finechem Corporation, 4988, Kaiseicho, Shunan 746-0006, Japan
| | - Norio Shibata
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan.,Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan.,Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Avenue, 321004 Jinhua, China
| |
Collapse
|