1
|
Liang X, Ding QH, Yang JT, Yang HF, Deng Y, Shi L, Wei K, Yang YR. Total syntheses of the parvistemoline alkaloids enabled by stereocontrolled Ir/Pd-catalyzed allylic alkylation. Nat Commun 2024; 15:10812. [PMID: 39737970 DOI: 10.1038/s41467-024-55111-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
The functionalized polycycle with densely contiguous tertiary stereocenters is a formidable challenge in synthesizing the parvistemoline family of Stemona alkaloids. We herein report their catalytic, asymmetric total syntheses in 13-14 steps from commercially available 2-(methoxycarbonyl)-pyrrole, featuring the development and deployment of an Ir/Pd-synergistically-catalyzed allylation of α-non-substituted keto esters with secondary aryl-substituted alcohols, stereodivergently accessible to four stereoisomers. Using chiral Pd-enolate and Ir π-allyl complex under neutral conditions, no epimerization occurs. Additionally, the other two adjacent stereogenic centers can be installed diastereoselectively by Zn(BH4)2-promoted reduction and Krische's Ir-catalyzed 2-(alkoxycarbonyl)allylation. Oxy-Michael addition delivered the fused tetrahydrofuran-γ-lactone scaffold. At the later stage, hydrogenation or oxidation of pyrrole moiety furnished groups of tetrahydropyrrole and pyrrolidone. Finally, vinylogous Mannich reaction of an in situ generated iminium ion or Krische's Ir-catalyzed 2-(alkoxycarbonyl)allylation of aldehyde installed the monocyclic lactone for parvistemonine (2) and didehydroparvistemonine (3), respectively.
Collapse
Affiliation(s)
- Xiao Liang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Qian-Hui Ding
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Ting Yang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hua-Fei Yang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Deng
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Shi
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Kun Wei
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yu-Rong Yang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
2
|
Alonso D, Maciá B, Pastor IM, Baeza A. Recent Advances on the Catalytic Asymmetric Allylic α-Alkylation of Carbonyl Derivatives Using Free Allylic Alcohols. ACS ORGANIC & INORGANIC AU 2024; 4:269-286. [PMID: 38855332 PMCID: PMC11157516 DOI: 10.1021/acsorginorgau.3c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 06/11/2024]
Abstract
During the last years, the development of more sustainable and straightforward methodologies to minimize the generation of waste organic substances has acquired high importance within synthetic organic chemistry. Therefore, it is not surprising that many efforts are devoted to ameliorating already well-known successful methodologies, that is, the case of the asymmetric allylic allylation reaction of carbonyl compounds. The use of free alcohols as alkylating agents in this transformation represents a step forward in this sense since it minimizes waste production and the substrate manipulation. In this review, we aim to gather the most recent methodologies describing this strategy by paying special attention to the reaction mechanisms, as well as their synthetic applications.
Collapse
Affiliation(s)
- Diego
A. Alonso
- Instituto
de Síntesis Orgánica, and Dpto. de Química Orgánica, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Beatriz Maciá
- Department
of Natural Sciences, Manchester Metropolitan
University, Oxford Road, Manchester M1 5GD, United Kingdom
| | - Isidro M. Pastor
- Instituto
de Síntesis Orgánica, and Dpto. de Química Orgánica, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Alejandro Baeza
- Instituto
de Síntesis Orgánica, and Dpto. de Química Orgánica, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| |
Collapse
|
3
|
Olivier WJ, Henneveld JS, Smith JA, Hawkins BC, Bissember AC. Strategies for the synthesis of Stemona alkaloids: an update. Nat Prod Rep 2022; 39:2308-2335. [PMID: 36218078 DOI: 10.1039/d2np00058j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 2009 to 2022The Stemona alkaloids, which are found in plant species from the family Stemonaceae, represent a tremendously large and structurally-diverse family of natural products. This review presents and discusses a selection of case studies, grouped by alkaloid class, that showcase the key strategies and overall progress that has been made in the synthesis of Stemona alkaloids and related compounds since 2009. Structural reassignments that have been reported over this period are also identified where necessary.
Collapse
Affiliation(s)
- Wesley J Olivier
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Jackson S Henneveld
- Department of Chemistry, University of Otago, Dunedin, Otago 9054, New Zealand.
| | - Jason A Smith
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Bill C Hawkins
- Department of Chemistry, University of Otago, Dunedin, Otago 9054, New Zealand.
| | - Alex C Bissember
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia.
| |
Collapse
|
4
|
Sawano T, Takeuchi R. Recent advances in iridium-catalyzed enantioselective allylic substitution using phosphoramidite-alkene ligands. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00316c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This minireview describes the recent progress of iridium-catalyzed enantioselective allylic substitution using phosphoramidite-alkene ligands realizing highly enantioselective carbon–carbon and carbon–heteroatom bond formation.
Collapse
Affiliation(s)
- Takahiro Sawano
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Ryo Takeuchi
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| |
Collapse
|
5
|
Shi T, Wang X, Chen JH, Cao F, Yin G, Zeng YF, Wang Z. Recent Advances in the Transformations of Different Types of Stemona Alkaloids. Org Chem Front 2022. [DOI: 10.1039/d2qo00789d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, researches on the total syntheses of Stemona alkaloids with different 5/7 bicyclic systems have attracted increasing attention, and the development momentum in this field has gradually changed...
Collapse
|