1
|
Sumii Y, Shibata N. Current State of Microflow Trifluoromethylation Reactions. CHEM REC 2023; 23:e202300117. [PMID: 37309300 DOI: 10.1002/tcr.202300117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/25/2023] [Indexed: 06/14/2023]
Abstract
The trifluoromethyl group is a powerful structural motif in drugs and polymers; thus, developing trifluoromethylation reactions is an important area of research in organic chemistry. Over the past few decades, significant progress has been made in developing new methods for the trifluoromethylation of organic molecules, ranging from nucleophilic and electrophilic approaches to transition-metal catalysis, photocatalysis, and electrolytic reactions. While these reactions were initially developed in batch systems, more recent microflow versions are highly attractive for industrial applications owing to their scalability, safety, and time efficiency. In this review, we discuss the current state of microflow trifluoromethylation. Approaches for microflow trifluoromethylation based on different trifluoromethylation reagents are described, including continuous flow, flow photochemical, microfluidic electrochemical reactions, and large-scale microflow reactions.
Collapse
Affiliation(s)
- Yuji Sumii
- Department of Engineering, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya, 466-8555, Japan
| | - Norio Shibata
- Department of Engineering, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya, 466-8555, Japan
- Department of Nanopharmaceutical Sciences, Department of Engineering, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya, 466-8555, Japan
| |
Collapse
|
2
|
Karuo Y, Tarui A, Sato K, Kawai K, Omote M. Reactions Using Freons and Halothane as Halofluoroalkyl/Halofluoroalkenyl Building Blocks. CHEM REC 2023; 23:e202300029. [PMID: 37017496 DOI: 10.1002/tcr.202300029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/15/2023] [Indexed: 04/06/2023]
Abstract
In recent years, hydrofluorocarbon compounds such as chlorofluorocarbons, hydrochlorofluorocarbons, and 2-bromo-2-chloro-1,1,1-trifluoroethane (halothane) have been used as fluorine-containing building blocks to construct functional fluorine-containing compounds, e. g., polymers, liquid crystals, and medicines. Hydrofluorocarbons promote the formation of reactive fluoroalkyl or fluoroalkenyl species via anionic or radical processes, and these species can act as nucleophiles or electrophiles depending on the reaction conditions. Progress in fluorine chemistry using hydrofluorocarbons in the last 30 years is described in this review and diverse reactions are discussed, including the fluoroalkyl/alkenyl products and proposed mechanisms involved.
Collapse
Affiliation(s)
- Yukiko Karuo
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Atushi Tarui
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Kazuyuki Sato
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Kentaro Kawai
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Masaaki Omote
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| |
Collapse
|
3
|
Ex-situ generation and synthetic utilization of bare trifluoromethyl anion in flow via rapid biphasic mixing. Nat Commun 2023; 14:1231. [PMID: 36869027 PMCID: PMC9984407 DOI: 10.1038/s41467-022-35611-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/13/2022] [Indexed: 03/05/2023] Open
Abstract
Fluoroform (CF3H) is the simplest reagent for nucleophilic trifluoromethylation intermediated by trifluoromethyl anion (CF3-). However, it has been well-known that CF3- should be generated in presence of a stabilizer or reaction partner (in-situ method) due to its short lifetime, which results in the fundamental limitation on its synthetic utilization. We herein report a bare CF3- can be ex-situ generated and directly used for the synthesis of diverse trifluoromethylated compounds in a devised flow dissolver for rapid biphasic mixing of gaseous CF3H and liquid reagents that was designed and structurally optimized by computational fluid dynamics (CFD). In flow, various substrates including multi-functional compounds were chemoselectively reacted with CF3-, extending to the multi-gram-scale synthesis of valuable compounds by 1-hour operation of the integrated flow system.
Collapse
|
4
|
Sumii Y, Iwasaki H, Fujihira Y, Mahmoud EM, Adachi H, Kagawa T, Cahard D, Shibata N. KHMDS/Triglyme Cryptate as an Alternative to Phosphazene Base in Stereodivergent Pentafluoroethylation of N-Sulfinylimines Using HFC-125. J Org Chem 2022; 87:15806-15819. [PMID: 36315641 DOI: 10.1021/acs.joc.2c01821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
A protocol for the stereodivergent pentafluoroethylation of N-sulfinylimines using HFC-125 with KHMDS/triglyme has been developed. Both diastereomers of the pentafluoroethylated amines can be selectively synthesized based on the presence or absence of triglyme. This additive-controlled protocol allows the KHMDS/triglyme cryptate to be a straightforward and cheap alternative to previously reported base-controlled stereodivergent trifluoromethylation using potassium hexamethyldisilazide (KHMDS) versus P4-tBu.
Collapse
Affiliation(s)
- Yuji Sumii
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| | - Hiroto Iwasaki
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| | - Yamato Fujihira
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| | - Elsayed M Mahmoud
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan.,Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Hiroaki Adachi
- Tosoh Finechem Corporation, 4988, Kaiseicho, Shunan 746-0006, Japan
| | - Takumi Kagawa
- Tosoh Finechem Corporation, 4988, Kaiseicho, Shunan 746-0006, Japan
| | - Dominique Cahard
- CNRS UMR 6014 COBRA, Normandie Université, 76821 Mont Saint Aignan, France
| | - Norio Shibata
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan.,Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| |
Collapse
|
5
|
Fujihira Y, Iwasaki H, Sumii Y, Adachi H, Kagawa T, Shibata N. Continuous-Flow Synthesis of Perfluoroalkyl Ketones via Perfluoroalkylation of Esters Using HFC-23 and HFC-125 under a KHMDS–Triglyme System. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yamato Fujihira
- Department of Engineering, Life Science and Applied Chemistry Program, Nagoya Institute of Technology, Gokiso-cho, Showa-Ku, Nagoya 466-8555, Japan
| | - Hiroto Iwasaki
- Department of Engineering, Life Science and Applied Chemistry Program, Nagoya Institute of Technology, Gokiso-cho, Showa-Ku, Nagoya 466-8555, Japan
| | - Yuji Sumii
- Department of Engineering, Life Science and Applied Chemistry Program, Nagoya Institute of Technology, Gokiso-cho, Showa-Ku, Nagoya 466-8555, Japan
| | - Hiroaki Adachi
- Tosoh Finechem Corporation, 4988, Kaiseicho, Shunan, 746-0006, Japan
| | - Takumi Kagawa
- Tosoh Finechem Corporation, 4988, Kaiseicho, Shunan, 746-0006, Japan
| | - Norio Shibata
- Department of Engineering, Life Science and Applied Chemistry Program, Nagoya Institute of Technology, Gokiso-cho, Showa-Ku, Nagoya 466-8555, Japan
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso-cho, Showa-Ku, Nagoya 466-8555, Japan
| |
Collapse
|
6
|
Sheldon DJ, Crimmin MR. Repurposing of F-gases: challenges and opportunities in fluorine chemistry. Chem Soc Rev 2022; 51:4977-4995. [PMID: 35616085 PMCID: PMC9207706 DOI: 10.1039/d1cs01072g] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 11/24/2022]
Abstract
Fluorinated gases (F-gases) are routinely employed as refrigerants, blowing agents, and electrical insulators. These volatile compounds are potent greenhouse gases and consequently their release to the environment creates a significant contribution to global warming. This review article seeks to summarise: (i) the current applications of F-gases, (ii) the environmental issues caused by F-gases, (iii) current methods of destruction of F-gases and (iv) recent work in the field towards the chemical repurposing of F-gases. There is a great opportunity to tackle the environmental and sustainability issues created by F-gases by developing reactions that repurpose these molecules.
Collapse
Affiliation(s)
- Daniel J Sheldon
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, UK.
| | - Mark R Crimmin
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, UK.
| |
Collapse
|