1
|
Li X, Cheng Y, Li Y, Sun F, Zhan X, Yang Z, Yang J, Du Y. DMSO/SOCl 2-Enabled Synthesis of 3-Chloroindoles via Desulfonylative Chlorocyclization of N,N-Disubstituted 2-Alkynylanilines. J Org Chem 2024; 89:2039-2049. [PMID: 38241277 DOI: 10.1021/acs.joc.3c02471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
The application of the DMSO/SOCl2 system enabled the intramolecular cyclization/chlorination of N,N-disubstituted 2-alkynylanilines, leading to the synthesis of a series of 3-chloroindoles with moderate to good yields. Differing from the previously reported interrupted Pummerer reaction featuring the introduction of SMe moiety, the current approach adopted an alternative pathway that realized the incorporation of chlorine atom to the indole skeleton via a desulfonylative chlorocyclization process.
Collapse
Affiliation(s)
- Xuemin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yifu Cheng
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yue Li
- Hebei Key Laboratory of State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Fengxia Sun
- Research Center for Chemical Safety & Security and Verification Technology & College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xiangyu Zhan
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Zhifang Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jingyue Yang
- Hebei Key Laboratory of State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Yokoe H, Kiriyama A, Shimoda M, Nakajima S, Hashizume Y, Endo Y, Iwamoto R, Tsubuki M, Kanoh N. Cis-Selective Double Spirocyclization via Dearomatization and Isomerization under Thermodynamic Control. J Org Chem 2023; 88:1803-1814. [PMID: 36632764 DOI: 10.1021/acs.joc.2c02225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Spiro compounds have been considered key scaffolds for pharmaceutical applications. Although many synthetic methods exist for monospirocycles, fewer approaches are known for dispirocycles. Here, we report a highly cis-selective method for constructing a 5/6/5-dispirocyclic structure containing pyrrolidine and γ-lactam rings with various substituents from a series of N-arylpropiolamides. The high cis-selectivity would result from isomerization under thermodynamic control. Cis- and trans-diastereomers can be in equilibrium, favoring cis-adducts.
Collapse
Affiliation(s)
- Hiromasa Yokoe
- School of Pharmacy and Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Akiko Kiriyama
- School of Pharmacy and Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Miho Shimoda
- School of Pharmacy and Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Satoru Nakajima
- School of Pharmacy and Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yuna Hashizume
- School of Pharmacy and Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yuto Endo
- School of Pharmacy and Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Ryoko Iwamoto
- School of Pharmacy and Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Masayoshi Tsubuki
- School of Pharmacy and Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Naoki Kanoh
- School of Pharmacy and Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| |
Collapse
|
3
|
Recent Advances in the Use of Dimethyl Sulfoxide as a Synthon in Organic Chemistry. Top Curr Chem (Cham) 2022; 380:55. [DOI: 10.1007/s41061-022-00411-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/06/2022] [Indexed: 11/27/2022]
|
4
|
Wang J, Lu XX, Yang RP, Xiang ZH, Zhang BB, Chao S, Liu L, Yan Y, Shang X. Synthesis of Spiro[5.5]trienones- and Spiro[4.5]trienones-Fused Selenocyanates via Electrophilic Selenocyanogen Cyclization and Dearomative Spirocyclization. J Org Chem 2022; 87:13089-13101. [PMID: 36170059 DOI: 10.1021/acs.joc.2c01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A practical strategy for the synthesis of spiro[5.5]trienones-fused selenocyanates and spiro[4.5]trienones-fused selenocyanates through electrophilic selenocyanogen cyclization and dearomative spirocyclization is reported. This approach was conducted under mild conditions with broad substrate scope and good functional group tolerance. The utility of this procedure is exhibited in the late-stage functionalization of nature product and drug molecules.
Collapse
Affiliation(s)
- Jia Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Xiao-Xiao Lu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Run-Ping Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Zhi-Hao Xiang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Bing-Bing Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Shujun Chao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Lixia Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yunhui Yan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Xuefang Shang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| |
Collapse
|
5
|
Li X, Wang X, Li Y, Xiao J, Du Y. Application of DMSO as a methylthiolating reagent in organic synthesis. Org Biomol Chem 2022; 20:4471-4495. [PMID: 35593912 DOI: 10.1039/d2ob00570k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the past decades, DMSO has been widely used not only as a common solvent but also as an environmentally benign oxidant in various organic transformations. Most strikingly, DMSO can be used as a sulfur source to construct methylthiolated building blocks of potential biologically active molecules, which is a remarkable achievement in the field of organic sulfur chemistry. The purpose of this review article is to summarize and discuss the main developments in the application of DMSO as a methylthiolating reagent to introduce the -SMe functionality in organic synthesis.
Collapse
Affiliation(s)
- Xuemin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Xi Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yadong Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Jiaxi Xiao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
6
|
Qiao Z, Shao C, Gao Y, Liang K, Yin H, Chen FX. An electrophilic thiocyanation/ipso-cyclization leading to spirocyclohexadienones. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
Li X, Zhang B, Zhao B, Wang X, Xu L, Du Y. Synthesis of 3‐Halogenated Quinolin‐2‐Ones from
N
‐Arylpropynamides
via
Hypervalent Iodine(III)−Mediated Umpolung Process. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaoxian Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 People's Republic of China
| | - Beibei Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 People's Republic of China
| | - Bingyue Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 People's Republic of China
| | - Xiaofan Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 People's Republic of China
| | - Lingzhi Xu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 People's Republic of China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 People's Republic of China
| |
Collapse
|
8
|
Du Y, Li X, Zhang B, Yu Z, Zhang D, Shi H, Xu L. Divergent Synthesis of Chalcogenylated Quinolin-2-ones and Spiro[4,5]trienones via Intramolecular Cyclization of N-Arylpropynamides Mediated by Diselenides/Disulfides and PhICl2. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0041-1737291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractThe reaction of N-arylpropynamides with (dichloroiodo)benzene (PhICl2) and diselenides/disulfides resulted in a divergent synthesis of chalcogenylated quinolinones and spiro[4.5]trienes through intramolecular electrophilic cyclization and chalcogenylation. The chalcogenyl functional group was introduced by an electrophilic reactive organosulfenyl chloride or selenenyl chloride species, generated in situ from the reaction of disulfides/diselenides and PhICl2. Notably, the divergent cyclization pathways were determined by the substituent type on the aniline ring in N-arylpropynamide substrates. Substrates bearing a fluoro, methoxy or trifluoromethoxy group at the para-position of the aniline underwent an alternative spiralization pathway to give the 3-chalcogenylated spiro[4,5]trienones.
Collapse
|