1
|
Iradukunda Y, Kang JY, Zhao XB, Nsanzamahoro S, Fu XK, Liu J, Ding YZ, Ha W, Shi YP. A novel "Turn-on" fluorometric assays triggered reaction for β-glucosidase activity based on quercetin derived silicon nanoparticles and its potential use for cell imaging. Anal Chim Acta 2023; 1280:341880. [PMID: 37858561 DOI: 10.1016/j.aca.2023.341880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
β-Glucosidase (β-Gluco) is an enzyme that is crucial to numerous diseases, including cancer, and in sector of industries, it is used in the manufacturing of food. Measuring its enzymatic activity is critical for biomedical studies and other activities. Herein, we have developed a novel and precise fluorescent sensing method for measuring β-Gluco activity based on the production of yellow-green fluorescent quercetin-silicon nanoparticles (Q-SiNPs) produced from quercetin (QN) as a reducing agent and 3-[2-(2-aminoethyl amino) ethylamino] propyl-trimethoxy silane (AEEA) as a silane molecule. β-Gluco hydrolyzed quercetin-3-O-β-d-glucopyranoside (QO-β-DG) to produce QN, which was then used to produce Q-SiNPs. Reaction parameters, including temperature, time, buffer, pH, and probe concentration, were carefully tuned in this study. Subsequently, the fluorescence intensity was performed, showing good linearity (R2 = 0.989), a broad linear dynamic range between 0.5 and 12 U L-1, and a limit of detection (LOD) as low as 0.428 U L-1, which was proven by fluorescence measurements. Most importantly, various parameters were detected and characterized with or without β-Gluco. The designed probe was successively used to assess β-Gluco activity in human serum and moldy bread. However, the mathematical findings revealed recoveries for human serum ranging from 99.3 to 101.66% and for moldy bread from 100.11 to 102.5%. Additionally, Q-SiNPs were well suited to being incubated in vitro with L929 and SiHa living cells, and after using an Olympus microscope, imaging showed good fluorescence cell images, and their viability evinced minimal cytotoxicity of 77% for L929 and 88% for SiHa. The developed fluorescence biosensor showed promise for general use in diagnostic tests. Therefore, due to this outstanding sensing modality, we anticipate that this research can provide a novel schematic project for creating simple nanostructures with a suitable plan and a green synthetic option for enzyme activity and cell imaging.
Collapse
Affiliation(s)
- Yves Iradukunda
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jing-Yan Kang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China
| | - Xiao-Bo Zhao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China
| | - Stanislas Nsanzamahoro
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiao-Kang Fu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China
| | - Jia Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China
| | - Yu-Zhu Ding
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China
| | - Wei Ha
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China.
| |
Collapse
|
2
|
Lazare J, Tebes-Stevens C, Weber EJ. A multiple linear regression approach to the estimation of carboxylic acid ester and lactone alkaline hydrolysis rate constants. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:183-210. [PMID: 36951517 PMCID: PMC10547131 DOI: 10.1080/1062936x.2023.2188608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/25/2023] [Indexed: 05/03/2023]
Abstract
Pesticides, pharmaceuticals, and other organic contaminants often undergo hydrolysis when released into the environment; therefore, measured or estimated hydrolysis rates are needed to assess their environmental persistence. An intuitive multiple linear regression (MLR) approach was used to develop robust QSARs for predicting base-catalyzed rate constants of carboxylic acid esters (CAEs) and lactones. We explored various combinations of independent descriptors, resulting in four primary models (two for lactones and two for CAEs), with a total of 15 and 11 parameters included in the CAE and lactone QSAR models, respectively. The most significant descriptors include pKa, electronegativity, charge density, and steric parameters. Model performance is assessed using Drug Theoretics and Cheminformatics Laboratory's DTC-QSAR tool, demonstrating high accuracy for both internal validation (r2 = 0.93 and RMSE = 0.41-0.43 for CAEs; r2 = 0.90-0.93 and RMSE = 0.38-0.46 for lactones) and external validation (r2 = 0.93 and RMSE = 0.43-0.45 for CAEs; r2 = 0.94-0.98 and RMSE = 0.33-0.41 for lactones). The developed models require only low-cost computational resources and have substantially improved performance compared to existing hydrolysis rate prediction models (HYDROWIN and SPARC).
Collapse
Affiliation(s)
- Jovian Lazare
- Oak Ridge Institute for Science and Education (ORISE), hosted at U.S. Environmental Protection Agency, Athens, Georgia 30605, United States
| | - Caroline Tebes-Stevens
- Center for Environmental Measurement and Modeling, United States Environmental Protection Agency, Athens, Georgia 30605, United States
| | - Eric J. Weber
- Center for Environmental Measurement and Modeling, United States Environmental Protection Agency, Athens, Georgia 30605, United States
| |
Collapse
|
3
|
Schmerling C, Sewald L, Heilmann G, Witfeld F, Begerow D, Jensen K, Bräsen C, Kaschani F, Overkleeft HS, Siebers B, Kaiser M. Identification of fungal lignocellulose-degrading biocatalysts secreted by Phanerochaete chrysosporium via activity-based protein profiling. Commun Biol 2022; 5:1254. [PMID: 36385496 PMCID: PMC9668830 DOI: 10.1038/s42003-022-04141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
Activity-based protein profiling (ABPP) has emerged as a versatile biochemical method for studying enzyme activity under various physiological conditions, with applications so far mainly in biomedicine. Here, we show the potential of ABPP in the discovery of biocatalysts from the thermophilic and lignocellulose-degrading white rot fungus Phanerochaete chrysosporium. By employing a comparative ABPP-based functional screen, including a direct profiling of wood substrate-bound enzymes, we identify those lignocellulose-degrading carbohydrate esterase (CE1 and CE15) and glycoside hydrolase (GH3, GH5, GH16, GH17, GH18, GH25, GH30, GH74 and GH79) enzymes specifically active in presence of the substrate. As expression of fungal enzymes remains challenging, our ABPP-mediated approach represents a preselection procedure for focusing experimental efforts on the most promising biocatalysts. Furthermore, this approach may also allow the functional annotation of domains-of-unknown functions (DUFs). The ABPP-based biocatalyst screening described here may thus allow the identification of active enzymes in a process of interest and the elucidation of novel biocatalysts that share no sequence similarity to known counterparts.
Collapse
Affiliation(s)
- Christian Schmerling
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| | - Leonard Sewald
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstraße 2, 45117, Essen, Germany
| | - Geronimo Heilmann
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstraße 2, 45117, Essen, Germany
- German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Frederick Witfeld
- Evolution of Plants and Fungi, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Dominik Begerow
- Evolution of Plants and Fungi, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | | | - Christopher Bräsen
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| | - Farnusch Kaschani
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstraße 2, 45117, Essen, Germany
- Analytics Core Facility Essen, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstraße 2, 45117, Essen, Germany
| | - Herman S Overkleeft
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany.
| | - Markus Kaiser
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstraße 2, 45117, Essen, Germany.
| |
Collapse
|