1
|
Nie J, He Z, Xie S, Li Y, He R, Chen L, Luo X. Expedient Synthesis of Alkyl and Aryl Thioethers Using Xanthates as Thiol-Free Reagents. Molecules 2024; 29:2485. [PMID: 38893360 PMCID: PMC11174007 DOI: 10.3390/molecules29112485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Thioethers are critical in the fields of pharmaceuticals and organic synthesis, but most of the methods for synthesis alkyl thioethers employ foul-smelling thiols as starting materials or generate them as by-products. Additionally, most thiols are air-sensitive and are easily oxidized to produce disulfides under atmospheric conditions; thus, a novel method for synthesizing thioethers is necessary. This paper reports a simple, effective, green method for synthesizing dialkyl or alkyl aryl thioether derivatives using odorless, stable, low-cost ROCS2K as a thiol surrogate. This transformation offers a broad substrate scope and good functional group tolerance with excellent selectivity. The reaction likely proceeds via xanthate intermediates, which can be readily generated via the nucleophilic substitution of alkyl halides or aryl halides with ROCS2K under transition-metal-free and base-free conditions.
Collapse
Affiliation(s)
- Jinli Nie
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental & Chemical Engineering, Wuyi University, Jiangmen 529020, China; (J.N.); (Z.H.); (S.X.); (R.H.); (L.C.)
| | - Ziqing He
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental & Chemical Engineering, Wuyi University, Jiangmen 529020, China; (J.N.); (Z.H.); (S.X.); (R.H.); (L.C.)
| | - Sijie Xie
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental & Chemical Engineering, Wuyi University, Jiangmen 529020, China; (J.N.); (Z.H.); (S.X.); (R.H.); (L.C.)
| | - Yibiao Li
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental & Chemical Engineering, Wuyi University, Jiangmen 529020, China; (J.N.); (Z.H.); (S.X.); (R.H.); (L.C.)
| | - Runfa He
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental & Chemical Engineering, Wuyi University, Jiangmen 529020, China; (J.N.); (Z.H.); (S.X.); (R.H.); (L.C.)
| | - Lu Chen
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental & Chemical Engineering, Wuyi University, Jiangmen 529020, China; (J.N.); (Z.H.); (S.X.); (R.H.); (L.C.)
| | - Xiai Luo
- Hunan Province Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| |
Collapse
|
2
|
Cao JM, Zhu WC, Liu XY, Rao W, Shen SS, Sheng DP, Wang SY. Simultaneous Preparation of Sulfides/Selenides and Sulfones via Synergistic Nickel-Catalyzed Reductive Coupling and S N2 Reaction. Org Lett 2023; 25:9207-9212. [PMID: 38113225 DOI: 10.1021/acs.orglett.3c03777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Sulfone compounds and thioether compounds are two highly valuable classes of compounds, but it is challenging to prepare sulfone and thioether compounds simultaneously and efficiently. Here we report that sulfides/selenides and sulfones can be obtained simultaneously using allyl bromide/benzyl bromide-activated alkyl bromides and thiosulfonates/selenosulfonates using a nickel-catalyzed reductive coupling and SN2 synergistic strategy, which is characterized by excellent atom and step economy, mild reaction conditions, broad functional group compatibility, and excellent yields.
Collapse
Affiliation(s)
- Ji-Min Cao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Wei-Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Xin-Yu Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shu-Su Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99 Xuefu Road, Huqiu District, Suzhou 215009, P. R. China
| | - Dao-Peng Sheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Chen Y, Wang F, Rao W, Shen S, Sheng D, Wang SY. Copper-Catalyzed Synthesis of S-S Bond-Containing Silanols from SCBs and Trisulfide-1,1-dioxides. J Org Chem 2023. [PMID: 37235545 DOI: 10.1021/acs.joc.2c02968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this work, an efficient method for the copper-catalyzed ring-opening hydrolysis of silacyclobutanes to silanols was developed. This strategy has the advantages of friendly reaction conditions, simple operation, and good functional group compatibility. No additional additives are required in the reaction, and the S-S bond can also be introduced into the organosilanol compounds in one step. Furthermore, the success at the gram scale demonstrates the great potential of the developed protocol for practical industrial applications.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Fei Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shusu Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99, Xuefu Road, Huqiu district, Suzhou 215009, P.R. China
| | - Daopeng Sheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
Jiang YF, Zhu WC, Liu XY, Tian SY, Han JH, Rao W, Shen SS, Sheng D, Wang SY. Synthesis of 1,3-Dibenzenesulfonylpolysulfane (DBSPS) and Its Application in the Preparation of Aryl Thiosulfonates from Boronic Acids. Org Lett 2023; 25:1776-1781. [PMID: 36867002 DOI: 10.1021/acs.orglett.3c00526] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Herein, we provide a novel method for the synthesis of 1,3-dibenzenesulfonylpolysulfane (DBSPS), which further reacts with boronic acids to afford thiosulfonates. Commercially available boron compounds greatly expanded the range of thiosulfonates. Experimental and theoretical mechanistic investigations suggested that DBSPS could provide both thiosulfone fragments and dithiosulfone fragments, but the generated aryl dithiosulfonates were unstable and decomposed into thiosulfonates.
Collapse
Affiliation(s)
- Yi-Fan Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Wei-Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Xin-Yu Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Shi-Yin Tian
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Jia-Hui Han
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shu-Su Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99, Xuefu Road, Huqiu District, Suzhou 215009, P. R. China
| | - Daopeng Sheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Abstract
Sulfur-containing compounds have attracted considerable interest due to their wide-ranging applications in pharmaceuticals, agriculture, natural products, and organic materials. The development of efficient and rapid methods for the construction and transformation of sulfur-containing compounds is of great importance. Since nickel is inexpensive and has a variety of valence states, strong nucleophilicity and low energy barriers for oxidative addition, the construction and transformation of sulfur-containing compounds by nickel-catalyzed cross-coupling have become important strategies. In addition, sulfur-containing compounds have also been playing increasingly important roles in the field of cross-coupling due to their thermodynamically stable but dynamic activity. This review will focus on nickel-catalyzed construction and transformation of various sulfide-containing compounds, such as sulfides, disulfides, and hypervalent sulfur-containing compounds.
Collapse
Affiliation(s)
- Su Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Ming Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
6
|
Wu H, Qu B, Nguyen T, Lorenz JC, Buono F, Haddad N. Recent Advances in Non-Precious Metal Catalysis. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hao Wu
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Bo Qu
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Thach Nguyen
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Jon C. Lorenz
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Frederic Buono
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Nizar Haddad
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| |
Collapse
|
7
|
Yang YZ, Li Y, Lv GF, He DL, Li JH. Nickel-Catalyzed C-S Reductive Cross-Coupling of Alkyl Halides with Arylthiosilanes toward Alkyl Aryl Thioethers. Org Lett 2022; 24:5115-5119. [PMID: 35819227 DOI: 10.1021/acs.orglett.2c01954] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A nickel-catalyzed C-S reductive cross-coupling of alkyl halides with arylthiosilanes for producing alkyl aryl thioethers is developed. This reaction is initiated by umpolung transformations of arylthiosilanes followed by C-S reductive cross-coupling with alkyl halides to manage an electrophilic alkyl group onto the electrophilic sulfur atom and then construct a C(sp3)-S bond, and features exquisite chemoselectivity, excellent tolerance of diverse functional groups, and wide applications for late-stage modification of biologically relevant molecules.
Collapse
Affiliation(s)
- Yu-Zhong Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China.,Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yang Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China.,Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Gui-Fen Lv
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - De-Liang He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jin-Heng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China.,Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products, Yunnan University, Kunming, Yunnan 650091, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
8
|
Kanchana US, Diana EJ, Mathew TV. Recent trends in Nickel‐Catalyzed C‐S Bond Formation. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Thomas V Mathew
- St Thomas College Pala Chemistry Arunapuram P O 686574 Pala INDIA
| |
Collapse
|
9
|
Wang F, Chen Y, Rao W, Shen SS, Wang SY. Cu-catalyzed efficient construction of S (Se)-containing functional organosilicon compounds. Chem Commun (Camb) 2022; 58:12564-12567. [DOI: 10.1039/d2cc04512e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Cu-catalyzed cascade reaction of four-membered silacyclobutanes (SCBs) and thiosulfonates to construct S (Se)-containing organosilicon compounds is described.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Ying Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Shu-Su Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99, Xuefu road, Huqiu district, Suzhou, 215009, P. R. China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| |
Collapse
|