1
|
Mukherjee D, Karmakar I, Brahmachari G. Electro- and Mechanochemical Strategy as a Dual Synthetic Approach for Biologically Relevant 3-Nitro-imidazo-[1,2- a]pyridines. J Org Chem 2024; 89:12071-12084. [PMID: 39145592 DOI: 10.1021/acs.joc.4c00881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
We herein disclose a dual synthetic approach involving electrochemical and mechanochemical strategies for diversely functionalized 3-nitro-2-aryl-immidazo[1,2-a]pyridines. Both methods offer a practical and straightforward alternative route for accessing this important class of biologically promising nitrogen-containing heterocycles. Significant advantages of the newly developed methods include mild and energy-efficient reaction conditions, avoidance of transition metal catalysts, external heating and additional oxidants, shorter reaction times, good to excellent yields, broad substrate scope, gram-scale applicability, operational simplicity, and eco-friendliness. Furthermore, a synthetic application was extended by successfully reducing synthesized 3-nitro-2-aryl-immidazo[1,2-a]pyridines to their corresponding amino derivatives.
Collapse
Affiliation(s)
- Debojyoti Mukherjee
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, West Bengal 731 235, India
| | - Indrajit Karmakar
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, West Bengal 731 235, India
| | - Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, West Bengal 731 235, India
| |
Collapse
|
2
|
Karmakar I, Brahmachari G. Electrorearranged Difunctionalization of 4-Hydroxy-α-benzopyrones. J Org Chem 2024; 89:10524-10537. [PMID: 39028998 DOI: 10.1021/acs.joc.4c00734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
We herein report the exploration of an electrosynthetic strategy as a highly efficient and straightforward alternative protocol for accessing diversely substituted and biologically promising alkyl 2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxylates through an electrorearranged difunctionalization of 4-hydroxycoumarins, involving the singlet oxygen insertion from molecular oxygen, at ambient temperature. The present method is notably more advantageous than the previously reported photochemical conversion regarding yields and reaction times, substrate scope and functional group tolerability, operational simplicity, and scalability.
Collapse
Affiliation(s)
- Indrajit Karmakar
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India
| | - Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India
| |
Collapse
|
3
|
Brahmachari G. Practice of green chemistry strategies in synthetic organic chemistry: a glimpse of our sincere efforts in green chemistry research. Chem Commun (Camb) 2024; 60:8153-8169. [PMID: 38978452 DOI: 10.1039/d4cc02249a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
This feature article summarises our recent contributions (2019-2023) in designing and developing a handful of promising organic transformations for accessing several diversely functionalised biologically relevant organic scaffolds, following the green chemistry principles, particularly focusing on the application of low-energy visible light, electrochemistry, ball-milling, ultrasound, and catalyst- and additive-free synthetic strategies.
Collapse
Affiliation(s)
- Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India.
| |
Collapse
|
4
|
Datta K, Mitra B, Pariyar GC, Ghosh P. KI mediated one-pot cascade reaction for synthesis of 1,3,4-selenadiazoles. RSC Adv 2024; 14:15449-15454. [PMID: 38741970 PMCID: PMC11089885 DOI: 10.1039/d4ra01994f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
An efficient catalytic system consisting of KI and K2S2O8 for a one-pot pseudo three-component cascade reaction in the preparation of a diverse array of 1,3,4-selenadiazole derivatives from easily accessible precursors aldehydes, hydrazine and elemental selenium is demonstrated in this paper. Here, KI is used as the surrogate of iodine and K2S2O8 as the oxidant. The key advantages of this protocol include an easy reaction set up, operational simplicity, high functional group tolerance and utilisation of low toxicity chemicals. Further, a radical quenching reaction was also performed to confirm the mechanistic pathway.
Collapse
Affiliation(s)
- Kumaresh Datta
- Department of Chemistry, University of North Bengal Darjeeling West Bengal India +91 0353 2699001 +91 0353 2776381
| | - Bijeta Mitra
- Department of Chemistry, University of North Bengal Darjeeling West Bengal India +91 0353 2699001 +91 0353 2776381
| | - Gyan Chandra Pariyar
- Department of Food Technology, University of North Bengal Darjeeling West Bengal India
| | - Pranab Ghosh
- Department of Chemistry, University of North Bengal Darjeeling West Bengal India +91 0353 2699001 +91 0353 2776381
| |
Collapse
|
5
|
Rani P, Chahal S, Singh R, Sindhu J. Pushing Boundaries: What's Next in Metal-Free C-H Functionalization for Sulfenylation? Top Curr Chem (Cham) 2024; 382:13. [PMID: 38607428 DOI: 10.1007/s41061-024-00460-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/15/2024] [Indexed: 04/13/2024]
Abstract
The synthesis of thioether derivatives has been explored widely due to the potential application of these derivatives in medicinal chemistry, pharmaceutical industry and material chemistry. Within this context, there has been an increasing demand for the environmentally benign construction of C-S bonds via C-H functionalization under metal-free conditions. In the present article, we highlight recent developments in metal-free sulfenylation that have occurred in the past three years. The synthesis of organosulfur compounds via a metal-free approach using a variety of sulfur sources, including thiophenols, disulfides, sulfonyl hydrazides, sulfonyl chlorides, elemental sulfur and sulfinates, is discussed. Non-conventional strategies, which refer to the development of thioether derivatives under visible light and electrochemically mediated conditions, are also discussed. The key advantages of the reviewed methodologies include broad substrate scope and high reaction yields under environmentally benign conditions. This comprehensive review will provide chemists with a synthetic tool that will facilitate further development in this field.
Collapse
Affiliation(s)
- Payal Rani
- Department of Chemistry, College of Basic Sciences & Humanities, Chaudhary Charan Singh Haryana Agricultural University (CCS HAU), Hisar, Haryana, 125004, India
| | - Sandhya Chahal
- Department of Chemistry, College of Basic Sciences & Humanities, Chaudhary Charan Singh Haryana Agricultural University (CCS HAU), Hisar, Haryana, 125004, India
| | - Rajvir Singh
- Department of Chemistry, College of Basic Sciences & Humanities, Chaudhary Charan Singh Haryana Agricultural University (CCS HAU), Hisar, Haryana, 125004, India
| | - Jayant Sindhu
- Department of Chemistry, College of Basic Sciences & Humanities, Chaudhary Charan Singh Haryana Agricultural University (CCS HAU), Hisar, Haryana, 125004, India.
| |
Collapse
|
6
|
Karmakar P, Karmakar I, Mukherjee D, Bhowmick A, Brahmachari G. Mechanochemical Solvent-Free One-Pot Synthesis of Poly-Functionalized 5-(Arylselanyl)-1H-1,2,3-triazoles Through a Copper(I)-Catalyzed Click Reaction. Chemistry 2023; 29:e202302539. [PMID: 37665692 DOI: 10.1002/chem.202302539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
A mechanochemistry-driven practical and efficient synthetic protocol for accessing diverse series of biologically relevant poly-functionalized 5-(arylselanyl)-1H-1,2,3-triazoles through copper(I)-catalyzed click reaction between aryl/heteroaryl acetylenes, diaryl diselenides, benzyl bromides, and sodium azide has been accomplished under high-speed ball-milling. Advantages of this method include operational simplicity, avoidance of using solvent and external heating, one-pot synthesis, short reaction time in minutes, good to excellent yields, broad substrate scope, and gram-scale applications. Furthermore, synthesized organoselenium compounds were synthetically diversified to biologically promising selenones.
Collapse
Affiliation(s)
- Pintu Karmakar
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), 731 235, Santiniketan, West Bengal, India
| | - Indrajit Karmakar
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), 731 235, Santiniketan, West Bengal, India
| | - Debojyoti Mukherjee
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), 731 235, Santiniketan, West Bengal, India
| | - Anindita Bhowmick
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), 731 235, Santiniketan, West Bengal, India
| | - Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), 731 235, Santiniketan, West Bengal, India
| |
Collapse
|
7
|
Bhowmick A, Brahmachari G. C(sp)-C(sp 3) Bond Formation through Ligand- and Additive-Free CuO-Mediated Decarboxylative Direct Cross-Coupling of Coumarin-/Chromone-3-carboxylic Acids and Terminal Alkynes. Org Lett 2023; 25:7095-7099. [PMID: 37737117 DOI: 10.1021/acs.orglett.3c02369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
A practical and efficient method for the synthesis of functionalized 4-(aryl-/heteroaryl-ethynyl)chroman-2-ones and 2-(aryl-/heteroaryl-ethynyl)chroman-4-ones through copper-catalyzed decarboxylative direct cross-coupling of coumarin-/chromone-3-carboxylic acids with terminal alkynes, leading to the formation of C(sp)-C(sp3) bonds, has been unearthed. Advantages of this protocol include avoidance of any ligands and bases, a broad substrate scope, tolerance of diverse functional groups, and good to excellent yields.
Collapse
Affiliation(s)
- Anindita Bhowmick
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731 235, India
| | - Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731 235, India
| |
Collapse
|
8
|
Paul S, Das S, Choudhuri T, Sikdar P, Bagdi AK. Visible-Light-Induced Regioselective C-H Sulfenylation of Pyrazolo[1,5- a]pyrimidines via Cross-Dehydrogenative Coupling. J Org Chem 2023; 88:4187-4198. [PMID: 36916032 DOI: 10.1021/acs.joc.2c02665] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
A visible-light-induced cross-dehydrogenative methodology has been developed for the regioselective sulfenylation of pyrazolo[1,5-a]pyrimidine derivatives. Rose bengal, blue LEDs, KI, K2S2O8, and DMSO are all essential for this photocatalytic transformation. The protocol is applicable for the synthesis of a library of 3-(aryl/heteroaryl thio)pyrazolo[1,5-a]pyrimidine derivatives with broad functionalities. The selectivity and scalability of the methodology have been also demonstrated. Moreover, the efficiency of this strategy for sulfenylation of pyrazoles, indole, imidazoheterocycles, and 4-hydroxy coumarin has been proven. The mechanistic investigation revealed the radical-based mechanism and formation of diaryl disulfide as a key intermediate for this cross-dehydrogenative coupling reaction.
Collapse
Affiliation(s)
- Suvam Paul
- Department of Chemistry, University of Kalyani, Kalyani 741235, India
| | - Sourav Das
- Department of Chemistry, University of Kalyani, Kalyani 741235, India
| | | | - Papiya Sikdar
- Department of Chemistry, University of Kalyani, Kalyani 741235, India
| | - Avik Kumar Bagdi
- Department of Chemistry, University of Kalyani, Kalyani 741235, India
| |
Collapse
|
9
|
Borah B, Patat M, Singh V, Sivaprakash M, Prasad MS, Chowhan LR. Visible-light-induced organophotocatalytic and singlet oxygen-initiated domino construction of 1,4-dihydropyridines, C-3 functionalized spiro[indoline-3,4'-pyridines] and C-11 functionalized spiro[indeno-[1,2- b]quinoxaline-11,4'-pyridines]. Org Biomol Chem 2023; 21:1518-1530. [PMID: 36695344 DOI: 10.1039/d3ob00043e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A highly efficient pot, atom, and step economical method for the construction of pharmacologically potent structurally functionalized 1,4-dihydropyridines, quaternary centered C-3 functionalized spiro[indoline-3,4'-pyridines], and C-11 functionalized spiro[indeno[1,2-b]quinoxaline-11,4'-pyridines] via rose bengal photoredox catalysis under blue LED irradiation in an aqueous medium at room temperature has been developed. The products were isolated in excellent yields within a short reaction time for a variety of functional groups under transition metal- and ligand-free energy-efficient conditions in a green solvent system with high reaction mass efficiency and process mass intensity, which are the key advantages of the current work.
Collapse
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat, Gandhinagar-382030, India.
| | - Mihir Patat
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat, Gandhinagar-382030, India.
| | - Vipin Singh
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat, Gandhinagar-382030, India.
| | - Murugesan Sivaprakash
- Asymmetric Synthesis and Catalysis Laboratory, Department of Chemistry, Central University of Tamil Nadu (CUTN), Tiruvarur-610 005, India
| | - Madavi S Prasad
- Asymmetric Synthesis and Catalysis Laboratory, Department of Chemistry, Central University of Tamil Nadu (CUTN), Tiruvarur-610 005, India
| | - L Raju Chowhan
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat, Gandhinagar-382030, India.
| |
Collapse
|
10
|
Karmakar P, Karmakar I, Pal D, Das S, Brahmachari G. Electrochemical Regioselective C( sp2)-H Selenylation and Sulfenylation of Substituted 2-Amino-1,4-naphthoquinones. J Org Chem 2023; 88:1049-1060. [PMID: 36599149 DOI: 10.1021/acs.joc.2c02486] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A straightforward and efficient electrochemical method for regioselective C(sp2)-H selenylation and sulfenylation of substituted 2-amino-1,4-naphthoquinones has been unearthed. This oxidative cross-coupling reaction avoids using transition metal catalysts, oxidants, and high temperatures. The other notable advantages of this protocol are the tolerance of diverse functional groups, mild reaction conditions at ambient temperature, energy efficiency, good to excellent yields, short reaction times (in minutes), gram-scale applicability, and eco-friendliness.
Collapse
Affiliation(s)
- Pintu Karmakar
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan 731 235, West Bengal, India
| | - Indrajit Karmakar
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan 731 235, West Bengal, India
| | - Debopam Pal
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan 731 235, West Bengal, India
| | - Suravi Das
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan 731 235, West Bengal, India
| | - Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan 731 235, West Bengal, India
| |
Collapse
|
11
|
Shi Z, Li R, Lan W, Wei H, Sheng S, Chen J. Visible-light-induced intramolecular C–S bond formation for practical synthesis of 2,5-disubstituted 1,3,4-thiadiazoles. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2149342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Zhaocheng Shi
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Ruohan Li
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Wenqing Lan
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Haishan Wei
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Shouri Sheng
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Junmin Chen
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
12
|
Lapcinska S, Dimitrijevs P, Arsenyan P. Nonyl Acridine Orange as a Prospective Photocatalyst in Chalcogenylation of Coumarins and Quinolinones. J Org Chem 2022; 87:15261-15272. [PMID: 36310352 DOI: 10.1021/acs.joc.2c01803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A mild and efficient method for preparation of 3-sulfenyl and 3-selenyl coumarins and quinolinones mediated by artificial light or sunlight is presented. The elaborated protocol highlights the use of nonyl acridine orange as a photocatalyst to generate a sulfenyl radical from thiols that is further trapped by a heterocycle. The utility of the protocol is justified by a diverse scope of thiols, including short cysteine-containing peptides. The same reaction conditions can be applied for preparation of 3-selenyl coumarins and quinolinones. Various protected and unprotected selenocysteine-containing peptides were successfully utilized demonstrating high tolerance for amino acids with sensitive groups (Arg, Lys, Trp, His, and Tyr).
Collapse
Affiliation(s)
- Sindija Lapcinska
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Pavels Dimitrijevs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Pavel Arsenyan
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| |
Collapse
|
13
|
Abstract
A metal-free regioselective γ-C(sp3)-H sulfenylation of enaminones with heterocyclic thiols is reported. This transformation is efficient, mild, scalable, and environmentally friendly and tolerates a large variety of enaminones substrates and heterocyclic thiols. The utility of this strategy is demonstrated in a late-stage modification of bioactive natural products and drug derivatives.
Collapse
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Zhi-Wei Liu
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology of Natural Products, Kunming Medical University, Kunming 650500, P. R. China
| | - Tao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Xian Li
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology of Natural Products, Kunming Medical University, Kunming 650500, P. R. China
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.,State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
14
|
Brahmachari G, Bhowmick A, Karmakar I. Catalyst- and Additive-Free C(sp 3)-H Functionalization of (Thio)barbituric Acids via C-5 Dehydrogenative Aza-Coupling Under Ambient Conditions. ACS OMEGA 2022; 7:30051-30063. [PMID: 36061699 PMCID: PMC9434791 DOI: 10.1021/acsomega.2c03073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
A one-pot room-temperature-based three-component reaction strategy has been accomplished to access a new series of bio-relevant barbituric/2-thiobarbituric acid hydrazones from the reaction between barbituric/2-thiobarbituric acids, primary aromatic amines, and tert-butyl nitrite in an acetonitrile solvent, without the aid of any catalysts/additives. The ambient reaction conditions can efficiently implement the C(sp3)-H functionalization of barbituric/2-thiobarbituric acids via C-5 dehydrogenative aza-coupling. The process does not require column chromatographic purification; pure products are obtained by simple filtration of the resulting reaction mixture, followed by washing the crude residue with distilled water. The catalyst-free ambient reaction conditions, operational simplicity, broad substrate scope and tolerance for various functional groups, no need for chromatographic purification, good to excellent yields of products within reasonable reaction times in minutes, clean reaction profile, and gram-scale synthetic applicability make this procedure attractive, green, and cost-effective.
Collapse
|
15
|
Mao S, Zhao Y, Luo Z, Wang R, Yuan B, Hu J, Hu L, Zhang SQ, Ye X, Wang M, Chen Z. Metal-free photo-induced sulfidation of aryl iodide and other chalcogenation. Front Chem 2022; 10:941016. [PMID: 35958235 PMCID: PMC9360480 DOI: 10.3389/fchem.2022.941016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
A photo-induced C-S radical cross-coupling of aryl iodides and disulfides under transition-metal and external photosensitizer free conditions for the synthesis of aryl sulfides at room temperature has been presented, which features mild reaction conditions, broad substrate scope, high efficiency, and good functional group compatibility. The developed methodology could be readily applied to forge C-S bond in the field of pharmaceutical and material science.
Collapse
Affiliation(s)
- Shuai Mao
- Department of Medicinal Chemistry, School of Pharmacy, Xi’an Jiaotong University, Xi’an, SN, China
| | - Yahao Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Xi’an Jiaotong University, Xi’an, SN, China
| | - Zixuan Luo
- Xi’an Changqing Chemical Group Co., Ltd, Xi’an, SN, China
| | - Ruizhe Wang
- Department of Medicinal Chemistry, School of Pharmacy, Xi’an Jiaotong University, Xi’an, SN, China
| | - Bo Yuan
- Department of Medicinal Chemistry, School of Pharmacy, Xi’an Jiaotong University, Xi’an, SN, China
| | - Jianping Hu
- Qingyuan Edible Fungi Research Center, Lishui, ZJ, China
| | - Linghao Hu
- Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi’an Jiaotong University, Xi’an, SN, China
| | - Xiaoxing Ye
- Qingyuan Edible Fungi Research Center, Lishui, ZJ, China
| | - Mingliang Wang
- Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Zhengkai Chen
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
16
|
Zhang L, He J, Zhang P, Zhu D, Zheng K, Shen C. Visible-light-induced C–H sulfenylation of quinoxalin-2(1H)-ones with disulfides by sustainable cerium catalysis. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
17
|
Mandal M, Brahmachari G. Visible-Light-Promoted Intramolecular C-O Bond Formation via C sp3-H Functionalization: A Straightforward Synthetic Route to Biorelevant Dihydrofuro[3,2- c]chromenone Derivatives. J Org Chem 2022; 87:4777-4787. [PMID: 35300495 DOI: 10.1021/acs.joc.2c00059] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A photochemical method for the synthesis of functionalized dihydrofuro[3,2-c]chromenones via intramolecular Csp3-H cross-dehydrogenative oxygenation within a warfarin framework has been unearthed. Advantages of this protocol include abundant sunlight or low-energy visible light as the energy source, mild reaction conditions, and avoidance of metal catalysts.
Collapse
Affiliation(s)
- Mullicka Mandal
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, West Bengal 731 235, India
| | - Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, West Bengal 731 235, India
| |
Collapse
|
18
|
Mandal M, Karmakar I, Chakrabarty K, Das GK, Brahmachari G. Metal‐Free Sequential Amidation and Intramolecular C
sp2
−H Direct Amination of Coumarin‐3‐carboxylic Acids under Ambient Conditions: Scope and Mechanistic Insights. ChemistrySelect 2022. [DOI: 10.1002/slct.202103929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mullicka Mandal
- Department of Chemistry Visva-Bharati (a Central University) Santiniketan 731 235 West Bengal India
| | - Indrajit Karmakar
- Department of Chemistry Visva-Bharati (a Central University) Santiniketan 731 235 West Bengal India
| | - Kuheli Chakrabarty
- Department of Chemistry Visva-Bharati (a Central University) Santiniketan 731 235 West Bengal India
| | - Gourab Kanti Das
- Department of Chemistry Visva-Bharati (a Central University) Santiniketan 731 235 West Bengal India
| | - Goutam Brahmachari
- Department of Chemistry Visva-Bharati (a Central University) Santiniketan 731 235 West Bengal India
| |
Collapse
|
19
|
Brahmachari G, Karmakar I. Visible Light‐Driven and Singlet Oxygen‐Mediated Synthesis of 2‐Hydroxyphenylated‐α‐Ketoamides Through Decarboxylative Amidation of 4‐Hydroxycoumarins. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Goutam Brahmachari
- Visva-Bharati University, Santiniketan-731 235, WestBengal, India Chemistry Siksha Bhavana Street 731 235 Santiniketan INDIA
| | - Indrajit Karmakar
- Visva-Bharati University: Visva-Bharati Chemistry 731235 Santiniketan INDIA
| |
Collapse
|
20
|
Bugaenko DI, Karchava AV, Yurovskaya MA. Transition metal-free cross-coupling reactions with the formation of carbon-heteroatom bonds. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Nayek N, Karmakar P, Mandal M, Karmakar I, Brahmachari G. Photochemical and electrochemical regioselective cross-dehydrogenative C(sp 2)–H sulfenylation and selenylation of substituted benzo[ a]phenazin-5-ols. NEW J CHEM 2022. [DOI: 10.1039/d2nj02224a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The essence of photo- and electrochemistry: sulfenylation and selenylation of substituted benzo[a]phenazin-5-ols through cross-dehydrogenative C(sp2)–H functionalization.
Collapse
Affiliation(s)
- Nayana Nayek
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India
| | - Pintu Karmakar
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India
| | - Mullicka Mandal
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India
| | - Indrajit Karmakar
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India
| | - Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India
| |
Collapse
|
22
|
Chalcogenative spirocyclization of N-aryl propiolamides with diselenides/disulfides promoted by Selectfluor. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2021. [DOI: 10.1515/znb-2021-0154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
A practical and efficient synthetic route to construct a variety of 3-arylselenenyl/3-arylthio spiro[4.5]trienones was developed using Selectfluor reagent as a mild oxidant. This reaction proceeds via a sequence of electrophilic cation addition, spirocyclization and dearomatization, then offers an approach to introduce Se/S-centered cation into the C–C triple bonds. The utility of this protocol were justified by the excellent compatibility of a wide range of functional groups, good yields and scalability under mild reaction conditions.
Collapse
|
23
|
Yuan JW, Zhang Y, Huang GC, Ma MY, Yang TY, Yang LR, Zhang SR, Mao P, Qu LB. Site-specific C–H chalcogenation of quinoxalin-2(1 H)-ones enabled by Selectfluor reagent. Org Chem Front 2021. [DOI: 10.1039/d1qo01332g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A site-specific C6–H chalcogenation of quinoxalin-2(1H)-ones with various diselenides and dithiols is presented by employing Selectfluor reagent as an oxidant.
Collapse
Affiliation(s)
- Jin-Wei Yuan
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yang Zhang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Guang-Chao Huang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Meng-Yao Ma
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Teng-Yu Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Liang-Ru Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shou-Ren Zhang
- Henan Key Laboratory of Nanocomposites and Applications; Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Pu Mao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ling-Bo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|