1
|
Wang H, Lin S, Hong H, Hu Z, Huang Y, Zhang X, Lin SN, Yang BM. Photo-induced decarboxylative radical cascade cyclization of unactivated alkenes: access to CF- and CF 2-substituted ring-fused imidazoles. RSC Adv 2025; 15:12739-12745. [PMID: 40264862 PMCID: PMC12013602 DOI: 10.1039/d5ra02023a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025] Open
Abstract
A mild and effective visible-light-induced decarboxylative radical cascade reaction of olefin-containing imidazoles with α-fluorinated carboxylic acids as building blocks containing CF or ArCF2 moieties, has been developed to afford a series of monofluoromethylated or aryldifluoromethylated polycyclic imidazoles in medium to excellent yields with features of simple operation, available raw materials, and wide substrate scopes. In addition, the mechanistic experiments indicated that the methodology involved a radical pathway.
Collapse
Affiliation(s)
- Huinan Wang
- College of Chemistry and Environment Science, Shangrao Normal University Shangrao 334001 China
| | - Shengbao Lin
- College of Chemistry and Environment Science, Shangrao Normal University Shangrao 334001 China
| | - Hui Hong
- College of Chemistry and Environment Science, Shangrao Normal University Shangrao 334001 China
| | - Zhangjie Hu
- College of Chemistry and Environment Science, Shangrao Normal University Shangrao 334001 China
| | - Yawen Huang
- College of Chemistry and Environment Science, Shangrao Normal University Shangrao 334001 China
| | - Xiaolan Zhang
- College of Chemistry and Environment Science, Shangrao Normal University Shangrao 334001 China
| | - Sheng-Nan Lin
- College of Chemistry and Environment Science, Shangrao Normal University Shangrao 334001 China
| | - Bin-Miao Yang
- The International Joint Institute of Tianjin University, Fuzhou, Tianjin University Tianjin 300072 China
| |
Collapse
|
2
|
Huang R, Wang W, Lu K, Zhao X. Visible-light-induced cascade radical cyclization to access sulfamoylated benzo[4,5]imidazo[2,1- a]isoquinolin-6(5 H)-ones. Org Biomol Chem 2025; 23:892-899. [PMID: 39635756 DOI: 10.1039/d4ob01809e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
We report, for the first time, a visible-light-induced cascade radical sulfamoylation and cyclization of 2-arylbenzoimidazoles using sulfamoyl chlorides as sulfamoylation reagents to access sulfamoylated benzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-ones. The readily available nature of sulfamoyl chlorides and the metal-free conditions make this method a promising strategy for the synthesis of these compounds.
Collapse
Affiliation(s)
- Rong Huang
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, 300387, China.
| | - Wenbo Wang
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, 300387, China.
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xia Zhao
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, 300387, China.
| |
Collapse
|
3
|
Du Q, Pan R, Chen Y, Tang Y. Visible-light-induced radical cascade sulfonylation/cyclization towards indole-fused pyridine derivatives. RSC Adv 2025; 15:216-222. [PMID: 39758899 PMCID: PMC11694507 DOI: 10.1039/d4ra08000a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025] Open
Abstract
Indole-fused pyridines are an important motif in pharmaceuticals and functional molecules. A visible-light induced Ru(bpy)3Cl2·6H2O catalyzed radical cascade sulfonylation/cyclization strategy for the synthesis of indole-fused pyridine derivatives was developed. Diverse indole-fused pyridines bearing different functional groups were obtained in moderate to good yields. Compared with previous work, the easily accessible starting materials, molecular nitrogen as byproduct, and eco-friendly visible light as an energy source all make this transformation more sustainable and practical.
Collapse
Affiliation(s)
- Qin Du
- Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City) Changde 415000 China
| | - Ruohan Pan
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Engineering Technology Research Center of Key Preparation Technology of Biomedical Polymer Materials Changde 415000 China
| | - Yu Chen
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Engineering Technology Research Center of Key Preparation Technology of Biomedical Polymer Materials Changde 415000 China
| | - Yucai Tang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Engineering Technology Research Center of Key Preparation Technology of Biomedical Polymer Materials Changde 415000 China
| |
Collapse
|
4
|
Yuan J, Qu H, Jia W, Li J, Yang L, Xiao Y, Yin Y, Qu L. Photoredox-catalysed radical difluoromethylation/cyclization of N-acryloyl-2-arylbenzimidazole to access CF 2H-substituted benzimidazo[2,1- a]isoquinolin-6(5 H)-ones. Org Biomol Chem 2024; 22:8904-8915. [PMID: 39404009 DOI: 10.1039/d4ob01413h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
An efficient visible-light-promoted cascade difluoromethylation/cyclization reaction to access various CF2H-substituted benzimidazo[2,1-a]isoquinolin-6(5H)-ones was developed using difluoromethyltriphenylphosphonium bromide salt as the precursor of the -CF2H group under mild conditions. This protocol utilized an easily accessible and inexpensive organophotocatalyst, offering the benefits of a broad substrate scope, good functional group tolerance, and good to excellent yields, in addition to a simple operational procedure. Furthermore, the reaction mechanism was subjected to investigation, and it was demonstrated that a radical pathway constitutes a single electron transfer (SET) procedure.
Collapse
Affiliation(s)
- Jinwei Yuan
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Hongzhao Qu
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Wenfeng Jia
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Jinling Li
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Liangru Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Yongmei Xiao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Yanli Yin
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Lingbo Qu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- Zhongyuan Institute of Science and Technology, Zhengzhou 451400, China
| |
Collapse
|
5
|
Lin SN, Deng Y, Zhong H, Mao LL, Ji CB, Zhu XH, Zhang X, Yang BM. Visible Light-Induced Radical Cascade Difluoromethylation/Cyclization of Unactivated Alkenes: Access to CF 2H-Substituted Polycyclic Imidazoles. ACS OMEGA 2024; 9:28129-28143. [PMID: 38973879 PMCID: PMC11223139 DOI: 10.1021/acsomega.4c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024]
Abstract
An efficient and mild protocol for the visible light-induced radical cascade difluoromethylation/cyclization of imidazoles with unactivated alkenes using easily accessible and bench-stable difluoromethyltriphenylphosphonium bromide as the precursor of the -CF2H group has been developed to afford CF2H-substituted polycyclic imidazoles in moderate to good yields. This strategy, along with the construction of Csp3-CF2H/C-C bonds, is distinguished by mild conditions, no requirement of additives, simple operation, and wide substrate scope. In addition, the mechanistic experiments have indicated that the difluoromethyl radical pathway is essential for the methodology.
Collapse
Affiliation(s)
- Sheng-Nan Lin
- College
of Chemistry and Environment Science, Shangrao
Normal University, Shangrao 334001, China
| | - Yuanyuan Deng
- College
of Chemistry and Environment Science, Shangrao
Normal University, Shangrao 334001, China
| | - Hanxun Zhong
- College
of Chemistry and Environment Science, Shangrao
Normal University, Shangrao 334001, China
| | - Liu-Liang Mao
- College
of Chemistry and Environment Science, Shangrao
Normal University, Shangrao 334001, China
| | - Cong-Bin Ji
- College
of Chemistry and Environment Science, Shangrao
Normal University, Shangrao 334001, China
| | - Xian-Hong Zhu
- College
of Chemistry and Environment Science, Shangrao
Normal University, Shangrao 334001, China
| | - Xiaolan Zhang
- College
of Chemistry and Environment Science, Shangrao
Normal University, Shangrao 334001, China
| | - Bin-Miao Yang
- Joint
School of National University of Singapore and Tianjin University, Fuzhou 350207, China
| |
Collapse
|
6
|
Xu G, Lv J, Ding Q, Ma C, Jiang Y, Yu B. Direct C-H Alkylation of Benzothiadiazoles via Organic Photoredox Catalysis. J Org Chem 2024; 89:2777-2781. [PMID: 38315024 DOI: 10.1021/acs.joc.3c02307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
2,1,3-Benzothiadiazole is widely used as a privileged scaffold in pharmaceuticals and organic functional materials. Nonetheless, many current methods for the functionalization of 2,1,3-benzothiadiazole rely on preactivation, transition metal catalysts/promoters, or an elevated reaction temperature. Herein we disclose a transition-metal-free visible-light-induced photocatalytic method for the direct C-H alkylation of 2,1,3-benzothiadiazole using readily accessible carboxylic acid derivatives, i.e., N-hydroxyphthalimide esters (NHPEs), as alkylating reagents under room temperature. This mild and scalable method is highlighted by the late-stage installation of the benzothiadiazole scaffold in drugs and natural products.
Collapse
Affiliation(s)
- Guiqing Xu
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jiayuan Lv
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qingjie Ding
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chunhua Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuqin Jiang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bing Yu
- Green Catalysis Centre, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
7
|
Vijayakumar A, Manod M, Krishna RB, Mathew A, Mohan C. Diversely functionalized isoquinolines and their core-embedded heterocyclic frameworks: a privileged scaffold for medicinal chemistry. RSC Med Chem 2023; 14:2509-2534. [PMID: 38107174 PMCID: PMC10718595 DOI: 10.1039/d3md00248a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/23/2023] [Indexed: 12/19/2023] Open
Abstract
Isoquinoline-enrooted organic small-molecules represent a challenging molecular target in the organic synthesis arsenal attributed to their structural diversity and therapeutic importance. Into the bargain, isoquinolines are significant structural frameworks in modern medicinal chemistry and drug development. Consequently, synthetic organic and medicinal chemists have been intensely interested in efficient synthetic tactics for the sustainable construction of isoquinoline frameworks and their derivatives in enantiopure or racemic forms. This review accentuates an overview of the literature on the modern synthetic approaches exploited in synthesising isoquinolines and their core embedded heterocyclic skeletons from 2021 to 2022. In detail, the methodologies and inspected pharmacological studies for the array of diversely functionalized isoquinolines or their core-embedded heterocyclic/carbocyclic structures involving the introduction of substituents at C-1, C-3, and C-4 carbon and N-2 atom, bond constructions at the C1-N2 atom and C3-N2 atom, and structural scaffolding within isoquinoline compounds have been reviewed. This intensive study highlights the need for and relevance of relatively unexplored bioisosterism employing isoquinoline-based small-molecules in drug design.
Collapse
Affiliation(s)
- Archana Vijayakumar
- School of Chemical Sciences, Mahatma Gandhi University Kottayam 686560 India
| | - M Manod
- School of Chemical Sciences, Mahatma Gandhi University Kottayam 686560 India
| | - R Bharath Krishna
- Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University Kottayam 686560 India
| | - Abra Mathew
- School of Chemical Sciences, Mahatma Gandhi University Kottayam 686560 India
- Department of Chemistry, Indian Institute of Technology Palakkad Kerala 678577 India
| | - Chithra Mohan
- School of Chemical Sciences, Mahatma Gandhi University Kottayam 686560 India
| |
Collapse
|
8
|
Liu S, Zhao C, Pan M, Liao H, Liu Y, Zhang J, Rong L. Copper(I)-Catalyzed Radical Carbamylation/Cyclization of 2-Aryl- N-methacryloylindoles with Substituted Formamides to Assemble Amidated Indolo[2,1- a]isoquinolin-6(5 H)-ones. J Org Chem 2023; 88:16352-16364. [PMID: 37971731 DOI: 10.1021/acs.joc.3c01856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
An efficient synthesis of amidated indolo[2,1-a]isoquinolin-6(5H)-ones has been achieved via copper(I)-catalyzed radical carbamylation/cyclization of 2-aryl-N-methacryloylindoles with substituted formamides. In this reaction, an isoquinoline ring was constructed by carbamylation of a carbon-carbon double bond in 2-arylindoles. This strategy successfully introduces the substituted amide group into the indolo[2,1-a]isoquinoline skeleton and has advantages such as wide substituent scope, mild reaction conditions, high regioselectivity, and good to excellent yields.
Collapse
Affiliation(s)
- Shengjun Liu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Congcong Zhao
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Mei Pan
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Hailin Liao
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Yun Liu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Jinpeng Zhang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou 221006, Jiangsu, PR China
| | - Liangce Rong
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| |
Collapse
|
9
|
Tang Y, Duan J, Yang B, He Y, Du C, Zhang X. Visible-light-promoted organic-dye-catalyzed sulfonylation/cyclization to access indolo[2,1- a]isoquinoline derivatives. Org Biomol Chem 2023; 21:8152-8161. [PMID: 37781749 DOI: 10.1039/d3ob01289a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
An efficient visible-light-promoted organic-dye-catalyzed radical cascade cyclization was developed for the rapid synthesis of sulfonyl-substituted indolo[2,1-a]isoquinolines and benzimidazo[2,1-a]isoquinolin-6(5H)-ones. Using the economical and environmentally benign Eosin B as the photocatalyst, a wide range of indolo[2,1-a]isoquinoline derivatives were obtained in moderate to good yields. Mechanistic studies indicate that a sulfonyl radical pathway is involved in this reaction. Compared with previous works, this protocol has the advantages of being metal- and base-free, using visible light as a traceless energy source, simple operation and mild reaction conditions, all of which make this methodology more attractive.
Collapse
Affiliation(s)
- Yucai Tang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Engineering Technology Research Center of Key Preparation Technology of Biomedical Polymer Materials, Changde 415000, China.
| | - Jinglin Duan
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Engineering Technology Research Center of Key Preparation Technology of Biomedical Polymer Materials, Changde 415000, China.
| | - Biyu Yang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Engineering Technology Research Center of Key Preparation Technology of Biomedical Polymer Materials, Changde 415000, China.
| | - Yupeng He
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Engineering Technology Research Center of Key Preparation Technology of Biomedical Polymer Materials, Changde 415000, China.
| | - Changyuan Du
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Engineering Technology Research Center of Key Preparation Technology of Biomedical Polymer Materials, Changde 415000, China.
| | - Xiangyang Zhang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Engineering Technology Research Center of Key Preparation Technology of Biomedical Polymer Materials, Changde 415000, China.
| |
Collapse
|
10
|
Zhang C, Yu Z, Ding Y, Shi Y, Xie Y. Metal-free electrochemistry promoted radical cascade cyclization to access CF 3-containing benzimidazo[2,1- a]isoquinolin-6(5 H)-ones. Org Biomol Chem 2023; 21:6715-6718. [PMID: 37462425 DOI: 10.1039/d3ob00854a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Using CF3SO2Na as the CF3 radical source, an eco-friendly approach for electrochemistry-mediated radical cascade cyclization of N-methacryloyl-2-phenylbenzoimidazoles was described. This reaction features mild reaction conditions, readily available substrates, and moderate to good yields through the construction of two C-C bonds in one step.
Collapse
Affiliation(s)
- Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Zhichen Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yuxin Ding
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yuan Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Hangzhou, 310014, China
| |
Collapse
|
11
|
Bag S, Ojha S, Venugopalan S, Sahoo B. Photocatalytic Alkylation/Arylative Cyclization of N-Acrylamides of N-Heteroarenes and Arylamines with Dihydroquinazolinones from Unactivated Ketones. J Org Chem 2023; 88:12121-12130. [PMID: 37515554 DOI: 10.1021/acs.joc.3c01149] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
We describe a visible-light photoredox-catalyzed alkylation/arylative cyclization of N-acrylamides─from 2-arylindoles, 2-arylbenzimidazoles, or N-substituted anilines─with ketone-derived dihydroquinazolinones, accessing indolo- and benzimidazolo[2,1-a]isoquinolines or 2-oxindoles. The consecutive incorporation of alkyl- and aryl-carbogenic motifs across a C=C bond via formal cleavage of ketone α-C-C and arene C-H bonds leads to the formation of five- and six-membered rings, with an all-carbon quaternary stereocenter. This dicarbofunctionalization elaborates aromatization-driven radical C-C functionalization of unactivated aliphatic ketones to construct diverse cyclic structures with functionality tolerance.
Collapse
Affiliation(s)
- Sandip Bag
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram - 695551, Kerala, India
| | - Shubham Ojha
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram - 695551, Kerala, India
| | - Sreelakshmi Venugopalan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram - 695551, Kerala, India
| | - Basudev Sahoo
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram - 695551, Kerala, India
| |
Collapse
|
12
|
Lepori M, Schmid S, Barham JP. Photoredox catalysis harvesting multiple photon or electrochemical energies. Beilstein J Org Chem 2023; 19:1055-1145. [PMID: 37533877 PMCID: PMC10390843 DOI: 10.3762/bjoc.19.81] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023] Open
Abstract
Photoredox catalysis (PRC) is a cutting-edge frontier for single electron-transfer (SET) reactions, enabling the generation of reactive intermediates for both oxidative and reductive processes via photon activation of a catalyst. Although this represents a significant step towards chemoselective and, more generally, sustainable chemistry, its efficacy is limited by the energy of visible light photons. Nowadays, excellent alternative conditions are available to overcome these limitations, harvesting two different but correlated concepts: the use of multi-photon processes such as consecutive photoinduced electron transfer (conPET) and the combination of photo- and electrochemistry in synthetic photoelectrochemistry (PEC). Herein, we review the most recent contributions to these fields in both oxidative and reductive activations of organic functional groups. New opportunities for organic chemists are captured, such as selective reactions employing super-oxidants and super-reductants to engage unactivated chemical feedstocks, and scalability up to gram scales in continuous flow. This review provides comparisons between the two techniques (multi-photon photoredox catalysis and PEC) to help the reader to fully understand their similarities, differences and potential applications and to therefore choose which method is the most appropriate for a given reaction, scale and purpose of a project.
Collapse
Affiliation(s)
- Mattia Lepori
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| | - Simon Schmid
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| |
Collapse
|
13
|
Tang Y, Yang Y, Zhou Q, Duan J, Yang B, Du C, He Y. Metal- and additive-free radical-triggered nitration/cyclization to construct indolo[2,1- α]isoquinoline and benzimidazo[2,1- a]isoquinolin-6(5 H)-one derivatives using t-BuONO as nitro reagents. Org Biomol Chem 2023. [PMID: 37309208 DOI: 10.1039/d3ob00630a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An efficient metal- and additive-free nitro radical-triggered addition/cyclization of 2-aryl-N-acryloyl indoles/2-arylbenzimidazoles for the synthesis of nitro-substituted indolo[2,1-α]isoquinoline and benzimidazo[2,1-a]isoquinolin-6(5H)-one derivatives has been developed. The commercially available and low-cost t-BuONO was used as a nitro reagent. Due to mild reaction conditions, a variety of functional groups could be tolerated to give the corresponding products in moderate to good yields. Moreover, this nitration process could be scaled-up and the nitro group could be readily converted into the amino group, which may find applications in synthetic and medicinal chemistry.
Collapse
Affiliation(s)
- Yucai Tang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Changde 415000, China.
| | - Yiting Yang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Changde 415000, China.
| | - Qian Zhou
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Changde 415000, China.
| | - Jinglin Duan
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Changde 415000, China.
| | - Biyu Yang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Changde 415000, China.
| | - Changyuan Du
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Changde 415000, China.
| | - Yupeng He
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Changde 415000, China.
| |
Collapse
|
14
|
Upreti GC, Singh T, Khanna K, Singh A. Pd-Catalyzed Photochemical Alkylative Functionalization of C═C and C═N Bonds. J Org Chem 2023; 88:4422-4433. [PMID: 36930049 DOI: 10.1021/acs.joc.2c03028] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The development of excited-state palladium-catalyzed alkylative cyclization of acrylamides and the alkylation of quinoxalinones is described. The application of a variety of primary, secondary, and tertiary unactivated alkyl halides as alkyl radical precursors and the use of a simple catalyst system are the highlights of this reactivity manifold. The reactions exhibit wide scope, occur under mild conditions, and furnish the products in excellent yields.
Collapse
Affiliation(s)
| | - Tavinder Singh
- Department of Chemistry, IIT Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Kirti Khanna
- Department of Chemistry, IIT Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Anand Singh
- Department of Chemistry, IIT Kanpur, Kanpur 208016, Uttar Pradesh, India.,Department of Sustainable Energy Engineering, IIT Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
15
|
Yu WQ, Xiong BQ, Zhong LJ, Liu Y. Visible-light-promoted radical cascade alkylation/cyclization: access to alkylated indolo/benzoimidazo[2,1- a]isoquinolin-6(5 H)-ones. Org Biomol Chem 2022; 20:9659-9671. [PMID: 36416184 DOI: 10.1039/d2ob01732f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A new protocol is herein described for the direct generation of alkylated indolo/benzoimidazo[2,1-a]isoquinolin-6(5H)-one derivatives by using Hantzsch esters as alkylation radical precursors using a photoredox/K2S2O8 system. This oxidative alkylation of active alkenes involves a radical cascade cyclization process and a sequence of Hantzsch ester single electron oxidation, C-C bond cleavage, alkylation, arylation and oxidative deprotonation.
Collapse
Affiliation(s)
- Wen-Qin Yu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| |
Collapse
|
16
|
Tan Z, Jiang Y, Xu K, Zeng C. Electrophotoredox/Cerium-Catalyzed Unactivated Alkanes Activation for the Sustainable Synthesis of Alkylated Benzimidazo-Fused Isoquinolinones. J Catal 2022. [DOI: 10.1016/j.jcat.2022.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Cao X, Zhang Z, Li J, Shi B, Li M, Zhang G, Zhang X. Rh(III)-Catalyzed Oxidative Domino C-H/N-H Annulation: Diarylureas as Arylamine Donors for the Assembly of Indolo[2,1- a]isoquinolines. J Org Chem 2022; 87:13672-13682. [PMID: 36251477 DOI: 10.1021/acs.joc.2c01334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient and convenient Rh(III)-catalyzed double aryl C(sp2)-H bond and N-H activation and annulation reaction is reported for the synthesis of indolo[2,1-a]isoquinolines in the presence of the Cu(OAc)2 oxidant under heating conditions. Distinct from previous works with other arylamine donors, one molecule of 1,3-diarylurea can serve as a precursor of two molecules of arylamine in the reaction with diaryl-substituted alkynes.
Collapse
Affiliation(s)
- Xiyang Cao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Zhiguo Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Jingya Li
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Bingbing Shi
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Mengjuan Li
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Xingjie Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| |
Collapse
|
18
|
Li XY, Liu Y, Yu B. Nucleophilic Addition/Electrocyclization Strategy toward Polyheterocyclic-Fused Quinoline-2-thiones in Green Solvent. J Org Chem 2022; 87:13300-13307. [PMID: 36094161 DOI: 10.1021/acs.joc.2c00893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A metal-free and base-free cyclization reaction of ortho-heteroaryl anilines with isothiocyanatobenzene for the synthesis of diverse polyheterocyclic-fused quinoline-2-thiones was developed in PEG-200. This protocol features green solvent, lack of requirement for a metal and base, short reaction time consumption, and facile isolation via simple filtration. Furthermore, this protocol is easy to scale up which demonstrates outstanding synthetic scalability.
Collapse
Affiliation(s)
- Xiao-Yun Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Yan Liu
- Henan International Joint Laboratory of Rare Earth Composite Material, College of Materials Engineering, Henan University of Engineering, Zhengzhou, Henan Province 451191, China
| | - Bing Yu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| |
Collapse
|
19
|
Tang Y, Dai K, Xiang X, Yang Y, Li M. Synthesis of ester-functionalized indolo[2,1- a]isoquinolines via iron-catalyzed radical cascade cyclization of 2-aryl- N-acryloyl indoles with carbazates. Org Biomol Chem 2022; 20:5704-5711. [PMID: 35838169 DOI: 10.1039/d2ob00934j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
An FeCl2·4H2O-catalyzed oxidative alkoxycarbonylation/cyclization reaction of 2-aryl-N-acryloyl indoles with carbazates leading to ester-functionalized indolo[2,1-a]isoquinoline derivatives has been developed. The reaction features mild reaction conditions and broad functional group tolerance. Moreover, the ester group could be easily converted to the corresponding free acid and alcohol, and has high potential applications in organic and pharmaceutical synthesis. A radical pathway was proposed to explain this experiment.
Collapse
Affiliation(s)
- Yucai Tang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Changde 415000, China.
| | - Kaiming Dai
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Changde 415000, China.
| | - Xingxian Xiang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Changde 415000, China.
| | - Yiting Yang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Changde 415000, China.
| | - Min Li
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Changde 415000, China.
| |
Collapse
|
20
|
Li J, Mei L, Cai X, Zhang C, Cao T, Huang X, Liu Y, Wei W. Transition‐Metal‐Free Radical Cyclization of 2‐Arylbenzoimidazoles with Unactivated Alkanes
via
C(
sp
3
)−H Functionalizations in Aqueous Media. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jiao‐Zhe Li
- Institute of Drug Discovery Technology Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang 315211 People's Republic of China
| | - Lan Mei
- Institute of Drug Discovery Technology Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang 315211 People's Republic of China
| | - Xue‐Er Cai
- Institute of Drug Discovery Technology Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang 315211 People's Republic of China
| | - Can‐Can Zhang
- Institute of Drug Discovery Technology Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang 315211 People's Republic of China
| | - Ting‐Ting Cao
- Institute of Drug Discovery Technology Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang 315211 People's Republic of China
| | - Xun‐Jie Huang
- Institute of Drug Discovery Technology Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang 315211 People's Republic of China
| | - Yi‐Lin Liu
- College of Chemistry and Materials Engineering Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material Huaihua University Huaihua Hunan 418008 People's Republic of China
| | - Wen‐Ting Wei
- Institute of Drug Discovery Technology Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang 315211 People's Republic of China
| |
Collapse
|
21
|
Zheng YN, Liu Y, Cai XE, Wu HL, Huang XJ, Liu Y, Wei WT. Ring‐opening/cyclization of cyclobutanone oxime esters with alkenes in biomass‐derived solvent using copper catalyst and inorganic oxidant. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yan-Nan Zheng
- Ningbo University School of Materials Science and Chemical Engineering 315211 Ningbo CHINA
| | - Yi Liu
- Ningbo University School of Materials Science and Chemical Engineering 315211 Ningbo CHINA
| | - Xue-Er Cai
- Ningbo University School of Materials Science and Chemical Engineering 315211 Ningbo CHINA
| | - Hong-Li Wu
- Ningbo University School of Materials Science and Chemical Engineering 315211 Ningbo CHINA
| | - Xun-Jie Huang
- Ningbo University School of Materials Science and Chemical Engineering 315211 Ningbo CHINA
| | - Yilin Liu
- Huaihua University College of Chemistry and Materials Engineering 418008 Huaihua CHINA
| | - Wen-Ting Wei
- Ningbo University Materials Science and Chemical Engineering 818, Fenghua Road, Jiangbei District 315211 Ningbo CHINA
| |
Collapse
|
22
|
Zhang L, Chen P, Bai S. Decarboxylative alkylarylation of alkenes with PhI(O2CR)2 to access benzimidazo[2,1-a]isoquinolin-6(5H)-ones catalyzed by a low-valent divanadium complex. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Utilization of photocatalysts in decarboxylative coupling of carboxylic N-hydroxyphthalimide (NHPI) esters. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
24
|
Qin B, Huang S, Chen JQ, Xiao W, Wu J. Metal-free synthesis of sulfonylated indolo[2,1-a]isoquinolines from sulfur dioxide. Org Chem Front 2022. [DOI: 10.1039/d2qo00487a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Access to sulfonylated indolo[2,1-a]isoquinolines through an efficient three-component reaction of 2-aryl-N-acryloyl indoles, sulfur dioxide and aryldiazonium tetrafluoroborates is developed. This transformation is performed under metal-free and mild conditions by using...
Collapse
|
25
|
Liu Z, Zhong S, Ji X, Deng GJ, Huang H. Photoredox Cyclization of N-Arylacrylamides for Synthesis of Dihydroquinolinones. Org Lett 2021; 24:349-353. [PMID: 34904433 DOI: 10.1021/acs.orglett.1c04015] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metal- and additive-free photoredox cyclization of N-arylacrylamides is herein reported that provides a concise access to the formation of dihydroquinolinones. In this protocol, sustainable visible light was used as the energy source, and the organic light-emitting molecule 4CzIPN served as the efficient photocatalyst. This reaction system features exclusive 6-endo-trig cyclization selectivity with a generally good yield of a range of functionalized dihydroquinolinones and dihydrobenzoquinolinones. Mechanistical studies reveal the feasibility of both 1,3-H shift and intersystem crossing of the diradical intermediate.
Collapse
Affiliation(s)
- Zhaosheng Liu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Shuai Zhong
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Xiaochen Ji
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
26
|
Lin S, Cui J, Chen Y, Li Y. Copper-Catalyzed Direct Cycloaddition of Imidazoles and Alkenes to Trifluoromethylated Tricyclic Imidazoles. J Org Chem 2021; 86:15768-15776. [PMID: 34632765 DOI: 10.1021/acs.joc.1c01832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We reported herein a copper-catalyzed trifluoromethylarylated cycloaddition of imidazoles and olefins using CF3SO2Cl as the radical source to synthesize highly functionalized tricyclic imidazoles. This procedure exhibits a wide range of substrate scope with 25%-93% isolated yields (36 examples). Mechanistic studies were carried out to support a free trifluoromethyl radical pathway.
Collapse
Affiliation(s)
- Shengnan Lin
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jianchao Cui
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yu Chen
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yi Li
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
27
|
Kang QQ, Zhang WK, Ge GP, Zheng H, Wei WT. The construction of benzimidazo[2,1- a]isoquinolin-6(5 H)-ones from N-methacryloyl-2-phenylbenzoimidazoles through radical strategies. Org Biomol Chem 2021; 19:8874-8885. [PMID: 34610071 DOI: 10.1039/d1ob01465j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Benzimidazo[2,1-a]isoquinolin-6(5H)-one constitutes a structurally unique class of tetracyclic N-heterocycles that are found throughout a myriad of biologically active natural products, pharmaceutical compounds, and functional materials. Various synthetic routes for the preparation of benzimidazo[2,1-a]isoquinolin-6(5H)-ones have been reported. In particular, the use of N-methacryloyl-2-phenylbenzoimidazoles to construct benzimidazo[2,1-a]isoquinolin-6(5H)-ones through various radical strategies have attracted widespread attention due to the versatility and simple preparation of raw materials, as well as the step-economy and mild reaction conditions. Using representative examples, we highlight significant progress in the synthesis of benzimidazo[2,1-a]isoquinolin-6(5H)-ones, including the selection of the catalytic system, substrate scope, mechanistic understanding, and applications. The contents of this review focus on the development of C-, S-, P-, and Si-centered radical addition-intramolecular cyclization strategies.
Collapse
Affiliation(s)
- Qing-Qing Kang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Wei-Kang Zhang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Guo-Ping Ge
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Hongxing Zheng
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Wen-Ting Wei
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
28
|
Yue F, Dong J, Liu Y, Wang Q. Visible-light-mediated alkylation of 4-alkyl-1,4-dihydropyridines with alkenyl sulfones. Org Biomol Chem 2021; 19:8924-8928. [PMID: 34635901 DOI: 10.1039/d1ob01806j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein we report a mild, general protocol for visible-light-mediated alkylation of 4-alkyl-1,4-dihydropyridines with alkenyl sulfones. The protocol permits efficient functionalization of sulfones with a broad range of cyclic and acyclic secondary and tertiary alkyl groups and is scalable to the gram level. Its excellent functional group tolerance and mildness make it suitable for late-stage functionalization of natural products and drug molecules.
Collapse
Affiliation(s)
- Fuyang Yue
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China.
| | - Jianyang Dong
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China.
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China.
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China.
| |
Collapse
|
29
|
Wang C, Sun G, Huang HL, Liu J, Tang H, Li Y, Hu H, He S, Gao F. Visible-Light-Driven Sulfonylation/Cyclization to Access Sulfonylated Benzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-ones. Chem Asian J 2021; 16:2618-2621. [PMID: 34342941 DOI: 10.1002/asia.202100681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/18/2021] [Indexed: 12/17/2022]
Abstract
Visible-light-driven sulfonylation/cyclization of N-methacryloyl-2-phenylbenzoimidazoles has been successfully developed. Using commercially available sulfonyl chloride as sulfonylation reagent, a wide range of sulfonylated benzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-ones with potential antitumor activity were provided in acceptable to excellent yields. This method has the advantages of mild reaction conditions and outstanding functional group tolerance, and provides a new strategy for the development of potential antitumor lead compounds.
Collapse
Affiliation(s)
- Chen Wang
- Institute of Translation Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Guoquan Sun
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, P. R. China
| | - Hong-Li Huang
- College of Chemistry and Chemical Engineering, Liaocheng University, Shandong, 252059, P. R. China
| | - Jing Liu
- Institute of Translation Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Hua Tang
- Institute of Translation Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Yinghua Li
- Institute of Translation Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Honggang Hu
- Institute of Translation Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Shipeng He
- Institute of Translation Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Fei Gao
- Institute of Translation Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
30
|
Zhao B, Hammond GB, Xu B. Aromatic Ketone-Catalyzed Photochemical Synthesis of Imidazo-isoquinolinone Derivatives. J Org Chem 2021; 86:12851-12861. [PMID: 34436893 DOI: 10.1021/acs.joc.1c01486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have developed an efficient photocatalytic decarboxylative radical addition/cyclization strategy to synthesize imidazo-isoquinolinone derivatives using inexpensive aromatic ketone photocatalysts. This method not only tolerates a wide range of functional groups but also works well for both alkyl and aryl radicals.
Collapse
Affiliation(s)
- Bin Zhao
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Gerald B Hammond
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Bo Xu
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
31
|
Tian H, Yang S, Wang X, Xu W, Liu Y, Li Y, Wang Q. Dehalogenative Cross-Coupling of gem-Difluoroalkenes with Alkyl Halides via a Silyl Radical-Mediated Process. J Org Chem 2021; 86:12772-12782. [PMID: 34459192 DOI: 10.1021/acs.joc.1c01363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Herein, we describe a convenient general protocol for monofluoroalkenylation reactions of alkyl bromides involving cooperative visible-light photoredox catalysis and halogen abstraction. Mechanistic experiments showed that the products were generated by selective cross-coupling of aliphatic radicals with fluoroalkenyl radicals. Silyl radical-mediated halogen abstraction enabled the protocol to be used for the monofluoroalkenylation of a broad range of alkyl and heteroaryl halides. The protocol could be carried out on a gram scale and was applied to cholesterol, indicating its utility for late-stage monofluoroalkenylation reactions.
Collapse
Affiliation(s)
- Hao Tian
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Shaoxiang Yang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Xiaochen Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Wentao Xu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Yongqiang Li
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
32
|
Ramesh V, Gangadhar M, Nanubolu JB, Adiyala PR. Visible-Light-Induced Deaminative Alkylation/Cyclization of Alkyl Amines with N-Methacryloyl-2-phenylbenzoimidazoles in Continuous-Flow Organo-Photocatalysis. J Org Chem 2021; 86:12908-12921. [PMID: 34477379 DOI: 10.1021/acs.joc.1c01555] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we present a metal-free visible-light-induced eosin-y-catalyzed deaminative strategy for the sequential alkylation/cyclization of N-methacryloyl-2-phenylbenzoimidazoles with alkyl amine-derived Katritzky salts, which provides an efficient avenue for the construction of various benzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one derivatives in moderate to excellent yields under mild reaction conditions. The key enabling feature of this novel reaction includes utilization of redox-active pyridinium salts from abundant and inexpensive primary amine feedstocks that were converted into alkyl radicals via C-N bond scission and subsequent alkylation/cyclization with N-methacryloyl-2-phenylbenzoimidazoles by the formation of two new C-C bonds. In addition, we implemented this protocol for a variety of amino acids, affording the products in moderate yields. Moreover, the novel, environmentally benign batch protocol was further carried out in a continuous-flow regime by utilizing a perfluoroalkoxy alkane tubing microreactor under optimized reaction conditions with a blue light-emitting diode light source, enabling excellent yields and a shorter reaction time (19 min) versus the long reaction time (16 h) of the batch reaction. The reaction displays excellent functional group tolerance, easy operation, scalability, mild reaction conditions, and broad synthetic utility.
Collapse
Affiliation(s)
- Vankudoth Ramesh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Maram Gangadhar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jagadeesh Babu Nanubolu
- Centre for NMR and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Praveen Reddy Adiyala
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
33
|
Luo Y, Tian T, Nishihara Y, Lv L, Li Z. Iron-catalysed radical cyclization to synthesize germanium-substituted indolo[2,1- a]isoquinolin-6(5 H)-ones and indolin-2-ones. Chem Commun (Camb) 2021; 57:9276-9279. [PMID: 34519301 DOI: 10.1039/d1cc03907e] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A simple and efficient strategy for iron-catalysed cascade radical cyclization was developed, by which an array of germanium-substituted indolo[2,1-a]isoquinolin-6(5H)-ones and indolin-2-ones were obtained in one pot with germanium hydrides as radical precursors. A rapid intramolecular radical trapping mode enabled the selective arylgermylation of alkenes over the prevalent hydrogermylation reaction.
Collapse
Affiliation(s)
- Yani Luo
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Tian Tian
- Department of Chemistry, Renmin University of China, Beijing 100872, China. .,Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Yasushi Nishihara
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Leiyang Lv
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Zhiping Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
34
|
Pan C, Yuan C, Yu J. Molecular Oxygen‐Mediated Radical Cyclization of Acrylamides with Boronic Acids. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Changduo Pan
- School of Chemical and Environmental Engineering Jiangsu University of Technology Changzhou 213001 People's Republic of China
| | - Cheng Yuan
- School of Chemical and Environmental Engineering Jiangsu University of Technology Changzhou 213001 People's Republic of China
| | - Jin‐Tao Yu
- School of Petrochemical Engineering Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology Changzhou University Changzhou 213164 People's Republic of China
| |
Collapse
|
35
|
Lin S, Chen Y, Luo X, Li Y. Sustainable Cascades to Difluoroalkylated Polycyclic Imidazoles. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sheng‐Nan Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education and Yunnan Province School of Chemical Science and Technology Yunnan University Kunming 650091 China
| | - Yu Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Xiao‐Dong Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education and Yunnan Province School of Chemical Science and Technology Yunnan University Kunming 650091 China
| | - Yi Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) College of Chemistry Fuzhou University Fuzhou 350108 China
| |
Collapse
|