1
|
Liu X, Wang H, Lin D, Lin Z, Chen Q, Zhu B, Cao H. Multi-Auto-Tandem Reaction to Access Site-Specific Functionalized Tricyclic Furo[3,2- c]coumarins and Naphtho[2,3- b]furan-4,9-diones. Org Lett 2025; 27:4445-4449. [PMID: 40271868 DOI: 10.1021/acs.orglett.5c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
A three-component multi-auto-tandem reaction for the construction of site-specific tricyclic furo[3,2-c]coumarins via the formation of C-C, C-O, and C-S bonds in one step from 4-hydroxycoumarins/4-hydroxy-2-pyrones, ynals, and sodium sulfinates is reported. This cascade reaction efficiently produces a variety of rare C-2-functionalized furo[3,2-c]coumarins in moderate to good yields under straightforward reaction conditions. Furthermore, this protocol can be extended to a three-component coupling involving 2-hydroxy-1,4-naphthoquinone, ynals, and sodium sulfinates, yielding tricyclic naphtho[2,3-b]furan-4,9-dione derivatives. Notably, the carbonyl group and the α-position of ynals act as C-2 synthons in the specific multi-auto-tandem reaction, enabling the two aforementioned types of multicomponent transformations.
Collapse
Affiliation(s)
- Xiang Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Hexiang Wang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Dongrong Lin
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Zhen Lin
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Qiye Chen
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Baofu Zhu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| |
Collapse
|
2
|
Wang H, Li S, Wu X, Chen T, Liu W, Liu X, Cao H. Five-Component [2 + 2 + 1 + 1] Tandem Benzannulation Leading to Multifunctionalized Aromatic Amines. Org Lett 2024; 26:9648-9653. [PMID: 39485862 DOI: 10.1021/acs.orglett.4c03299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
An unprecedented five-component [2 + 2 + 1 + 1] benzannulation strategy for regioselective assembly of densely functionalized aromatic amines from two ynals, two malononitriles, and sodium sulfinates is established. The benzannulation protocol enables the efficient installation of five substituents on a benzene ring via the formation of multiple chemical bonds in a single operation, providing various multifunctionalized aromatic primary amines in moderate to good yields. Additionally, three-component [3 + 2 + 1] cycloaddition of malononitriles, ynals, and NH4SCN was also achieved to produce 2-amnopyridine derivatives with NH4SCN serving as an ammonia surrogate.
Collapse
Affiliation(s)
- Hexiang Wang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Shuting Li
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Xiaoying Wu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Tiantian Chen
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Wenjie Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Xiang Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| |
Collapse
|
3
|
Cao P, Fan G, Zhao X, Ren X, Wang Y, Wang Y, Gao Q. Regioselective synthesis of 3,4-diarylpyrimido[1,2- b]indazole derivatives enabled by iron-catalyzed ring-opening of styrene oxides. Chem Commun (Camb) 2024; 60:11742-11745. [PMID: 39319418 DOI: 10.1039/d4cc03910f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The first synthesis of 3,4-diarylpyrimido[1,2-b]indazole derivatives from 3-aminoindazoles has been realized. The FeCl3-catalyzed intermolecular epoxide ring-opening reaction altered the order of annulation, with the free primary NH2 groups in 3-aminoindazoles preferentially reacting with styrene oxides instead of aromatic aldehydes. This protocol is further highlighted by its broad substrate compatibility, high chemo- and regioselectivities, and the late-stage modifications of bioactive molecules. Without aromatic aldehydes, the synthesis of 3-aryl-4-acylpyrimido[1,2-b]indazole derivatives can also be accomplished using alternative reaction conditions.
Collapse
Affiliation(s)
- Penghui Cao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Guangping Fan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Xiaofei Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Xinyu Ren
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Yuru Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Yuying Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| |
Collapse
|
4
|
Shen X, Yu ZC, Zhou Y, Wu YD, Wu AX. Divergent synthesis of pyrrolidone fused pyrimido[1,2- b]indazole through selective trapping of an enone intermediate by 1 H-indazol-3-amine. Chem Commun (Camb) 2024; 60:9781-9784. [PMID: 39158556 DOI: 10.1039/d4cc03483j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
An oxidant-controlled divergent synthesis of a pyrrolidone fused pyrimido[1,2-b]indazole skeleton was developed through selective cyclization of an in situ generated enone intermediate and 1H-indazol-3-amine. The one-pot, metal-free process formed three C-N bonds, one C-C bond, and a tetrasubstituted carbon stereocenter containing a hydroxyl group. This method not only allowed for the synthesis of over 60 new pyrrolidone fused pyrimido[1,2-b]indazole derivatives, but was also compatible with the transformation of complex active molecules and the derivation of target products. Significantly, product 4q exhibited aggregation-induced emission (AIE) characteristics without any further modification.
Collapse
Affiliation(s)
- Xi Shen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zhi-Cheng Yu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - You Zhou
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yan-Dong Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - An-Xin Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
5
|
You X, Wang B, Wen F, Li Z. Construction of pyrazolo[1,5- a]pyrimidines and pyrimido[1,2- b]indazoles with calcium carbide as an alkyne source. Org Biomol Chem 2024; 22:5822-5826. [PMID: 38953741 DOI: 10.1039/d4ob00881b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
An efficient method for the construction of 5-arylpyrazolo[1,5-a]pyrimidines using calcium carbide as a solid alkyne source instead of flammable and explosive gaseous acetylene, pyrazole-3-amine and (hetero)aromatic aldehydes as starting materials in the presence of a copper mediator is described. Meanwhile, 2-arylpyrimido[1,2-b]indazoles are also synthesized under similar conditions using indazole-3-amine as a substitute for pyrazole-3-amine as a starting material. The method has salient features such as the use of an inexpensive and easy-to-handle alkyne source, commercially available substrates, wide functional group tolerance, a low-cost mediator, and simple workup procedures. This protocol can also be extended to gram-scale synthesis.
Collapse
Affiliation(s)
- Xinjie You
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Botao Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Fei Wen
- Yellow River Basin Ecotope Integration of Industry and Education Research Institute, Lanzhou Resources & Environment Voc-Tech University, Lanzhou 730022, P. R. China
| | - Zheng Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| |
Collapse
|
6
|
Ma LL, Zhou Y, Tang YX, Chen T, Wang ZH, Wu YD, Wang JG, Wu AX. I 2-DMSO-Mediated Construction of 2,3- and 2,4-Disubstituted Pyrimido[1,2- b]indazole Skeletons. J Org Chem 2024; 89:3941-3953. [PMID: 38421294 DOI: 10.1021/acs.joc.3c02761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
An efficient synthetic method for constructing 2,3- and 2,4-disubstituted pyrimidio[1,2-b]indazole skeletons through I2-DMSO-mediated and substrate-controlled regioselective [4 + 2] cyclization is reported. The reaction conditions are mild, its operation is simple, and the substrate scope is wide. More than 60 pyrimidio[1,2-b]indazole derivatives have been synthesized, providing a new methodology for constructing related molecules and potentially enriching bioactive-molecule libraries.
Collapse
Affiliation(s)
- Lin-Lin Ma
- School of Chemical Engineering, Guizhou Minzu University, Guiyang, Guizhou 550025, P. R. China
| | - You Zhou
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yong-Xing Tang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ting Chen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zheng-Hao Wang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yan-Dong Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jun-Gang Wang
- School of Chemical Engineering, Guizhou Minzu University, Guiyang, Guizhou 550025, P. R. China
| | - An-Xin Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
7
|
Tellal S, Jismy B, Hikem-Oukacha D, Abarbri M. Synthesis of Trifluoromethylated Pyrimido[1,2- b]indazole Derivatives through the Cyclocondensation of 3-Aminoindazoles with Ketoester and Their Functionalization via Suzuki-Miyaura Cross-Coupling and SN Ar Reactions. Molecules 2023; 29:44. [PMID: 38202627 PMCID: PMC10779788 DOI: 10.3390/molecules29010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
A new series of trifluoromethylated pyrimido[1,2-b]indazol-4(1H)-one derivatives was synthesized with good to excellent yields through a simple condensation of 3-aminoindazole derivatives with ethyl 4,4,4-trifluoro 3-oxobutanoate. The functionalization of the corresponding chlorinated fused tricyclic scaffolds via Suzuki-Miyaura and aromatic nucleophilic substitution reactions led to the synthesis of highly diverse trifluoromethylated pyrimido[1,2-b]indazole derivatives with good yields.
Collapse
Affiliation(s)
- Sakina Tellal
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l’Energie (PCM2E), EA 6299, Avenue Monge Faculté des Sciences, Parc de Grandmont, 37200 Tours, France;
- Laboratory of Physics and Chemistry Materials LPCM, Department of Chemistry, Faculty of Sciences, University Mouloud Mammeri, Tizi-Ouzou 15000, Algeria;
| | - Badr Jismy
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l’Energie (PCM2E), EA 6299, Avenue Monge Faculté des Sciences, Parc de Grandmont, 37200 Tours, France;
| | - Djamila Hikem-Oukacha
- Laboratory of Physics and Chemistry Materials LPCM, Department of Chemistry, Faculty of Sciences, University Mouloud Mammeri, Tizi-Ouzou 15000, Algeria;
| | - Mohamed Abarbri
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l’Energie (PCM2E), EA 6299, Avenue Monge Faculté des Sciences, Parc de Grandmont, 37200 Tours, France;
| |
Collapse
|
8
|
Zhou Y, Lei SG, Wang LS, Ma JT, Yu ZC, Wu YD, Wu AX. I 2-Promoted gem-Diarylethene Involved Aza-Diels-Alder Reaction and Wagner-Meerwein Rearrangement: Construction of 2,3,4-Trisubstituted Pyrimido[1,2- b]indazole Skeletons. Org Lett 2023; 25:3386-3390. [PMID: 37154544 DOI: 10.1021/acs.orglett.3c00886] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A [3 + 1 + 2] cyclization-rearrangement reaction scheme was developed to synthesize pyrimido[1,2-b]indazoles from aryl methyl ketones, 3-aminoindazoles, and gem-diarylethenes. This metal-free process proceeds via a sequential aza-Diels-Alder reaction and Wagner-Meerwein rearrangement, and a possible reaction mechanism was demonstrated based on control experiments. This method exhibits good substrate compatibility and allows simple reaction conditions. Moreover, the products display significant aggregation-induced emission characteristics after simple modifications.
Collapse
Affiliation(s)
- You Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Shuang-Gui Lei
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Li-Sheng Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Jin-Tian Ma
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Zhi-Cheng Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
9
|
Doraghi F, Mohaghegh F, Qareaghaj OH, Larijani B, Mahdavi M. Synthesis of N-, O-, and S-heterocycles from aryl/alkyl alkynyl aldehydes. RSC Adv 2023; 13:13947-13970. [PMID: 37181524 PMCID: PMC10167737 DOI: 10.1039/d3ra01778h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023] Open
Abstract
In the field of heterocyclic synthesis, alkynyl aldehydes serve as privileged reagents for cyclization reactions with other organic compounds to construct a broad spectrum of N-, O-, and S-heterocycles. Due to the immense application of heterocyclic molecules in pharmaceuticals, natural products, and material chemistry, the synthesis of such scaffolds has received wide attention. The transformations occurred under metal-catalyzed, metal-free-promoted, and visible-light-mediated systems. The present review article highlights the progress made in this field over the past two decades.
Collapse
Affiliation(s)
- Fatemeh Doraghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Farid Mohaghegh
- School of Chemistry, College of Science, University of Tehran Tehran Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
10
|
Sangepu VR, Sharma D, Venkateshwarlu R, Bhoomireddy RD, Jain KK, Kapavarapu R, Dandela R, Pal M. In silico studies, sonochemical synthesis and biological evaluation of 4-substituted pyrimido[1,2-b]indazoles. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Yu WQ, Xiong BQ, Zhong LJ, Liu Y. Visible-light-promoted radical cascade alkylation/cyclization: access to alkylated indolo/benzoimidazo[2,1- a]isoquinolin-6(5 H)-ones. Org Biomol Chem 2022; 20:9659-9671. [PMID: 36416184 DOI: 10.1039/d2ob01732f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A new protocol is herein described for the direct generation of alkylated indolo/benzoimidazo[2,1-a]isoquinolin-6(5H)-one derivatives by using Hantzsch esters as alkylation radical precursors using a photoredox/K2S2O8 system. This oxidative alkylation of active alkenes involves a radical cascade cyclization process and a sequence of Hantzsch ester single electron oxidation, C-C bond cleavage, alkylation, arylation and oxidative deprotonation.
Collapse
Affiliation(s)
- Wen-Qin Yu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| |
Collapse
|
12
|
Feng G, Meng J, Xu S, Gao Y, Zhu Y, Huang Z. Copper-catalyzed cross coupling reaction of sulfonyl hydrazides with 3-aminoindazoles. RSC Adv 2022; 12:30432-30435. [PMID: 36337965 PMCID: PMC9594103 DOI: 10.1039/d2ra05956h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023] Open
Abstract
A novel Cu-catalyzed radical-radical cross coupling reaction of 3-aminoindazoles with sulfonyl hydrazides has been disclosed, enabling the production of diverse 1,3-substituted aminoindazoles in good yields. This methodology is distinguished by readily available starting materials, wide substrate scope and operational simplicity. In addition, a gram-scale reaction has been well demonstrated.
Collapse
Affiliation(s)
- Guipeng Feng
- School of Pharmacy, Xinxiang University Xinxiang 453003 P. R. China
| | - Jie Meng
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University Jinan 250012 P.R. China
| | - Shaohong Xu
- School of Pharmacy, Xinxiang University Xinxiang 453003 P. R. China
| | - Yao Gao
- School of Pharmacy, Xinxiang University Xinxiang 453003 P. R. China
| | - Yingying Zhu
- School of Pharmacy, Xinxiang University Xinxiang 453003 P. R. China
| | - Ziyu Huang
- School of Pharmacy, Xinxiang University Xinxiang 453003 P. R. China
| |
Collapse
|
13
|
Synthesis of Diversified Pyrazolo[3,4-b]pyridine Frameworks from 5-Aminopyrazoles and Alkynyl Aldehydes via Switchable C≡C Bond Activation Approaches. Molecules 2022; 27:molecules27196381. [PMID: 36234926 PMCID: PMC9571537 DOI: 10.3390/molecules27196381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022] Open
Abstract
A cascade 6-endo-dig cyclization reaction was developed for the switchable synthesis of halogen and non-halogen-functionalized pyrazolo[3,4-b]pyridines from 5-aminopyrazoles and alkynyl aldehydes via C≡C bond activation with silver, iodine, or NBS. In addition to its wide substrate scope, the reaction showed good functional group tolerance as well as excellent regional selectivity. This new protocol manipulated three natural products, and the arylation, alkynylation, alkenylation, and selenization of iodine-functionalized products. These reactions demonstrated the potential applications of this new method.
Collapse
|
14
|
Qu Z, Ji X, Tang S, Deng GJ, Huang H. Hydrogen-Borrowing Reduction/Dehydrogenative Aromatization of Nitroarenes through Visible-Light-Induced Energy Transfer: An Entry to Pyrimidoindazoles and Carbazoles. Org Lett 2022; 24:7173-7177. [DOI: 10.1021/acs.orglett.2c02894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhonghua Qu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Hunan, Xiangtan 411105, China
| | - Xiaochen Ji
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Hunan, Xiangtan 411105, China
| | - Shi Tang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Hunan, Xiangtan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Hunan, Xiangtan 411105, China
| |
Collapse
|
15
|
Guo Y, Gao Q. Recent advances in 3-aminoindazoles as versatile synthons for the synthesis of nitrogen heterocycles. Org Biomol Chem 2022; 20:7138-7150. [PMID: 36043318 DOI: 10.1039/d2ob01348g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrogen-based heterocycles are an important class of structural scaffolds distributed in biologically active natural products, medicinal chemistry, and agrochemicals. Hence, there is increasing interest in the development of novel synthetic strategies for the construction of these privileged structural motifs. Recently, 3-aminoindazoles have emerged as versatile synthons participating in a variety of condensation annulation, denitrogenative transannulation and rearrangement ring expansion reactions, which provide efficient synthetic routes for the formation of nitrogen heterocycles. This review systematically highlights for the first time the most recent advances in 3-aminoindazoles to provide a deep understanding of using 3-aminoindazoles as versatile synthons in organic transformations for synthetic and medicinal chemists.
Collapse
Affiliation(s)
- Yimei Guo
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| |
Collapse
|
16
|
Guo Y, Huang PF, Xiong BQ, Fan JH, Liu Y. Cu-catalyzed oxidative denitrogenation of 3-aminoindazoles for the synthesis of isoquinolinones. Org Biomol Chem 2022; 20:6844-6853. [PMID: 35968914 DOI: 10.1039/d2ob01207c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Cu-catalyzed oxidative dual arylation of active alkenes via the cleavage of two C-N bonds of 3-aminoindazoles is presented for constructing isoquinolinones. Importantly, 3-aminoindazoles are used as efficient arylating agents through a radical process. This method has a good substrate scope and functional group compatibility.
Collapse
Affiliation(s)
- Yang Guo
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Peng-Fei Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Jian-Hong Fan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| |
Collapse
|
17
|
qin Z, Ma R, Ying S, Li F, Ma Y. Synthesis of substituted pyrimido[1,2‐b]indazoles through [3+2+1] cyclization of 3‐aminoindazoles, ketones and N,N‐dimethylaminoethanol as one carbon synthon. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | - Fanzhu Li
- Zhejiang Chinese Medical University CHINA
| | | |
Collapse
|
18
|
Xu Z, Geng X, Cai Y, Wang L. A Straightforward Approach to Fluorinated Pyrimido[1,2- b]indazole Derivatives via Metal/Additive-Free Annulation with Enaminones, 3-Aminoindazoles, and Selectfluor. J Org Chem 2022; 87:6562-6572. [PMID: 35486919 DOI: 10.1021/acs.joc.2c00136] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A novel and efficient three-component reaction with two C-N bonds and one C-F bond formation has been reported, which provides a straightforward route to a variety of fluorinated pyrimido[1,2-b]indazole derivatives. This transformation has the advantage of excellent functional group compatibility, including aliphatic and aromatic substituents enaminones. Moreover, metal and additives are not necessary for this reaction, which is of great significance for the synthesis and application of fluorinated heterocycles.
Collapse
Affiliation(s)
- Zhaoliang Xu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, PR China.,Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Xiao Geng
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, PR China
| | - Yiwen Cai
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, PR China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, PR China.,Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, PR China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, PR China
| |
Collapse
|
19
|
Geng X, Xu Z, Cai Y, Wang L. Visible-Light-Driven Multicomponent Cyclization by Trapping a 1,3-Vinylimine Ion Intermediate: A Direct Approach to Pyrimido[1,2- b]indazole Derivatives. Org Lett 2021; 23:8343-8347. [PMID: 34636565 DOI: 10.1021/acs.orglett.1c03076] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we develop a novel visible-light-driven three-component cyclization by trapping an 1,3-vinylimine ion intermediate for the direct synthesis of pyrimido[1,2-b]indazole derivatives from bromodifluoroacetic acid derivatives, enaminones, and 3-aminoindazoles under mild conditions. Notably, the robust methodology provides a valuable opportunity for the introduction of aliphatic substituents and enables good compatibility of complex bioactive molecules. Furthermore, this is the first example of photoinduced multicomponent reaction by employing bromodifluoroacetic acid derivatives as a C1-synthon.
Collapse
Affiliation(s)
- Xiao Geng
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
| | - Zhaoliang Xu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
| | - Yiwen Cai
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, P. R. China
| |
Collapse
|