1
|
Gao Y, Chai F, Szostak M, Liu C. Samarium(II) Diiodide-Mediated Deoxygenation of Sulfoxides. J Org Chem 2025. [PMID: 39912209 DOI: 10.1021/acs.joc.4c02971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Samarium diiodide-mediated deoxygenative activation of sulfoxides by selective S-O cleavage to construct thioethers under mild room temperature conditions has been achieved. A broad variety of sulfoxides, including aryl-aryl, aryl-alkyl, aryl-alkenyl, and alkyl-alkyl sulfoxides, can be readily converted to the corresponding thioethers using the highly chemoselective, operationally simple, and benign SmI2/Et3N reagent system. Extensive studies on the effect of additives indicate that typical samarium(II) iodide additives, such as water, alcohols, HMPA or nickel, have a negative impact on this valuable deoxygenation, while triethylamine promotes the deoxygenation in a versatile manner to afford synthetically useful thioether products.
Collapse
Affiliation(s)
- Yu Gao
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Fang Chai
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Chengwei Liu
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
2
|
Shimazumi R, Tobisu M. Unimolecular Fragment Coupling: A New Bond-Forming Methodology via the Deletion of Atom(s). JACS AU 2024; 4:1676-1695. [PMID: 38818052 PMCID: PMC11134393 DOI: 10.1021/jacsau.3c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 06/01/2024]
Abstract
Unimolecular fragment coupling (UFC) is defined as a reaction format, wherein atom(s) located in the middle of a molecule are extruded, and the remaining fragments are coupled. UFC is a potentially powerful strategy that is an alternative to transition-metal-catalyzed cross-coupling because the target chemical bond is formed in an intramolecular fashion, which is inherently beneficial for chemoselectivity and stereoselectivity issues. In this Perspective, we will present an overview of the recent advances in UFC reactions, which encompass those proceeding through the elimination of CO2, CO, SO2, isocyanates, N2, or single atoms primarily via transition metal catalysis.
Collapse
Affiliation(s)
- Ryoma Shimazumi
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mamoru Tobisu
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Innovative
Catalysis Science Division, Institute for Open and Transdisciplinary
Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Matsuyama T, Yatabe T, Yamaguchi K. Heterogeneously catalyzed decarbonylation of thioesters by supported Ni, Pd, or Rh nanoparticle catalysts. Org Biomol Chem 2024; 22:579-584. [PMID: 38126737 DOI: 10.1039/d3ob01897k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Decarbonylation of thioesters has been actively studied using homogeneous metal catalysts as an attractive approach for synthesizing thioethers, which are widely utilized in various fields, because decarbonylation ideally requires no additives and produces CO as the sole theoretical byproduct. However, heterogeneously catalyzed decarbonylation of thioesters has not been reported to date, despite its importance for the construction of environmentally-friendly and practical catalytic systems. This study demonstrated a heterogeneously catalyzed system for the decarbonylation of various aryl thioesters to produce thioethers and CO by utilizing CeO2- or hydroxyapatite-supported Ni, Pd, or Rh nanoparticle catalysts. The Ni catalysts showed high catalytic activity, while the Pd catalysts possessed excellent functional group tolerance. The Rh catalysts were suitable for the selective decarbonylation of unsymmetrically substituted thioesters.
Collapse
Affiliation(s)
- Takehiro Matsuyama
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Takafumi Yatabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
4
|
Liang YF, Bilal M, Tang LY, Wang TZ, Guan YQ, Cheng Z, Zhu M, Wei J, Jiao N. Carbon-Carbon Bond Cleavage for Late-Stage Functionalization. Chem Rev 2023; 123:12313-12370. [PMID: 37942891 DOI: 10.1021/acs.chemrev.3c00219] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Late-stage functionalization (LSF) introduces functional group or structural modification at the final stage of the synthesis of natural products, drugs, and complex compounds. It is anticipated that late-stage functionalization would improve drug discovery's effectiveness and efficiency and hasten the creation of various chemical libraries. Consequently, late-stage functionalization of natural products is a productive technique to produce natural product derivatives, which significantly impacts chemical biology and drug development. Carbon-carbon bonds make up the fundamental framework of organic molecules. Compared with the carbon-carbon bond construction, the carbon-carbon bond activation can directly enable molecular editing (deletion, insertion, or modification of atoms or groups of atoms) and provide a more efficient and accurate synthetic strategy. However, the efficient and selective activation of unstrained carbon-carbon bonds is still one of the most challenging projects in organic synthesis. This review encompasses the strategies employed in recent years for carbon-carbon bond cleavage by explicitly focusing on their applicability in late-stage functionalization. This review expands the current discourse on carbon-carbon bond cleavage in late-stage functionalization reactions by providing a comprehensive overview of the selective cleavage of various types of carbon-carbon bonds. This includes C-C(sp), C-C(sp2), and C-C(sp3) single bonds; carbon-carbon double bonds; and carbon-carbon triple bonds, with a focus on catalysis by transition metals or organocatalysts. Additionally, specific topics, such as ring-opening processes involving carbon-carbon bond cleavage in three-, four-, five-, and six-membered rings, are discussed, and exemplar applications of these techniques are showcased in the context of complex bioactive molecules or drug discovery. This review aims to shed light on recent advancements in the field and propose potential avenues for future research in the realm of late-stage carbon-carbon bond functionalization.
Collapse
Affiliation(s)
- Yu-Feng Liang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Muhammad Bilal
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Le-Yu Tang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tian-Zhang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yu-Qiu Guan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Minghui Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jialiang Wei
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
5
|
Cao H, Shi Y, Ma J, Yan P, Cong X, Bie F. Palladium- and Nickel-Catalyzed Synthesis of Thioethers via Thioesters - Aryl Halides Coupling. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
6
|
Du G, Zhu P, Wang J, Li X, Zhang D, Wang C, Sun F. Modular Synthesis of
ortho
‐Thiolated Aryl Esters Enabled with Thiocarbonate through Catellani Strategy. European J Org Chem 2023. [DOI: 10.1002/ejoc.202201382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Guopeng Du
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 P. R. China
| | - Pingliang Zhu
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 P. R. China
| | - Jing Wang
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 P. R. China
| | - Xinjin Li
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 P. R. China
| | - Dao‐Peng Zhang
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 P. R. China
| | - Chuan‐Zeng Wang
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 P. R. China
| | - Feng‐Gang Sun
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 P. R. China
| |
Collapse
|
7
|
Mao S, Zhao Y, Luo Z, Wang R, Yuan B, Hu J, Hu L, Zhang SQ, Ye X, Wang M, Chen Z. Metal-free photo-induced sulfidation of aryl iodide and other chalcogenation. Front Chem 2022; 10:941016. [PMID: 35958235 PMCID: PMC9360480 DOI: 10.3389/fchem.2022.941016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
A photo-induced C-S radical cross-coupling of aryl iodides and disulfides under transition-metal and external photosensitizer free conditions for the synthesis of aryl sulfides at room temperature has been presented, which features mild reaction conditions, broad substrate scope, high efficiency, and good functional group compatibility. The developed methodology could be readily applied to forge C-S bond in the field of pharmaceutical and material science.
Collapse
Affiliation(s)
- Shuai Mao
- Department of Medicinal Chemistry, School of Pharmacy, Xi’an Jiaotong University, Xi’an, SN, China
| | - Yahao Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Xi’an Jiaotong University, Xi’an, SN, China
| | - Zixuan Luo
- Xi’an Changqing Chemical Group Co., Ltd, Xi’an, SN, China
| | - Ruizhe Wang
- Department of Medicinal Chemistry, School of Pharmacy, Xi’an Jiaotong University, Xi’an, SN, China
| | - Bo Yuan
- Department of Medicinal Chemistry, School of Pharmacy, Xi’an Jiaotong University, Xi’an, SN, China
| | - Jianping Hu
- Qingyuan Edible Fungi Research Center, Lishui, ZJ, China
| | - Linghao Hu
- Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi’an Jiaotong University, Xi’an, SN, China
| | - Xiaoxing Ye
- Qingyuan Edible Fungi Research Center, Lishui, ZJ, China
| | - Mingliang Wang
- Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Zhengkai Chen
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
8
|
Xu T, Zhou X, Xiao X, Yuan Y, Liu L, Huang T, Li C, Tang Z, Chen T. Nickel-Catalyzed Decarbonylative Thioetherification of Carboxylic Acids with Thiols. J Org Chem 2022; 87:8672-8684. [PMID: 35723528 DOI: 10.1021/acs.joc.2c00866] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A nickel-catalyzed decarbonylative thioetherification of carboxylic acids with thiols was developed. Under the reaction conditions, benzoic acids, cinnamic acids, and benzyl carboxylic acids coupled with various thiols including both aromatic and aliphatic ones produce the corresponding thioethers in up to 99% yields. Moreover, this reaction was applicable to the modification of bioactive molecules such as 3-methylflavone-8-carboxylic acid, probenecid, and flufenamic acid, and the synthesis of acaricide chlorbenside. These results well demonstrated the potential synthetic value of this new reaction in organic synthesis.
Collapse
Affiliation(s)
- Tianhao Xu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Xingyu Zhou
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Xiong Xiao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Yan Yuan
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Tianzeng Huang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Chunya Li
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Zhi Tang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| |
Collapse
|
9
|
Shimazumi R, Tanimoto R, Kodama T, Tobisu M. Palladium-Catalyzed Unimolecular Fragment Coupling of N-Allylamides via Elimination of Isocyanate. J Am Chem Soc 2022; 144:11033-11043. [PMID: 35695391 DOI: 10.1021/jacs.2c04527] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transition metal-catalyzed unimolecular fragment coupling (UFC) is defined as processes that forge new chemical bonds through the extrusion of molecules, such as CO and CO2, and the subsequent recombination of the remaining fragments. Herein, we report on a new UFC reaction that involves the palladium-catalyzed elimination of an isocyanate fragment from an amide, with the formation of carbon-carbon and carbon-heteroatom bonds. An organometallic intermediate that is relevant to the catalytic reaction was characterized by X-ray crystallography. This UFC reaction enables the late-stage transformation of an amide functionality, allowing amides to be used as a convertible directing or protecting group.
Collapse
Affiliation(s)
- Ryoma Shimazumi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Riku Tanimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takuya Kodama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Mamoru Tobisu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Wang X, Dong ZB. A Recent Progress for the Synthesis of Thioester Compounds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xi Wang
- Wuhan Institute of Technology School of Chemistry and Environmental Engineering 430205 Wuhan CHINA
| | - Zhi-Bing Dong
- Wuhan Institute of Technology School of Chemistry and Environmental Engeering Liufang Campus, No. 206, Guanggu 1st Road 430205 Wuhan CHINA
| |
Collapse
|
11
|
Ziyaei Halimehjani A, Breit B. Rhodium-catalyzed regioselective addition of thioacids to terminal allenes: enantioselective access to branched allylic thioesters. Chem Commun (Camb) 2022; 58:1704-1707. [PMID: 35023518 DOI: 10.1039/d1cc06470c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rhodium-catalyzed regio- and enantioselective hydrothiolation of terminal allenes with thioacids is reported for the atom-economic synthesis of chiral branched allylic thioesters. By using a rhodium(I) catalyst system, diversities of terminal allenes and thioacids afforded the corresponding branched thioesters in excellent regioselectivity, high yield, and good enantioselectivity. This method was also explored for Fmoc-protected aminothioacids for diastereoselective synthesis of the corresponding thioesters.
Collapse
Affiliation(s)
- A Ziyaei Halimehjani
- Faculty of Chemistry, Kharazmi University, P. O. Box 15719-14911, 49 Mofateh Street, Tehran, Iran. .,Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albert Strasse 21, 79104 Freiburg im Breisgau, Germany.
| | - B Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albert Strasse 21, 79104 Freiburg im Breisgau, Germany.
| |
Collapse
|
12
|
Wu Q, Zhao YH, Lu-Lu C, Li HY, Li HX. Metal-free photocleavage of C(non-acyl)-S bond of thioesters for regioselective pyridylthioesterification of styrenes. Org Chem Front 2022. [DOI: 10.1039/d2qo00155a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transformation of thioesters via transition-metal-mediated C(acyl)−S bond cleavage is an emerging method to forge C-C and C-heteroatom bonds. Herein, we report the first activation of stronger C(non-acyl)–S bond of thioesters...
Collapse
|
13
|
Liu C, Szostak M. Forging C-S Bonds Through Decarbonylation: New Perspectives for the Synthesis of Privileged Aryl Sulfides. ChemCatChem 2021; 13:4878-4881. [PMID: 36213423 PMCID: PMC9534384 DOI: 10.1002/cctc.202101206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Indexed: 11/07/2023]
Abstract
Aryl thioethers are tremendously important motifs in various facets of chemical science. Traditional technologies for the precise assembly of aryl thioethers rely on transition-metal-catalyzed cross-coupling of aryl halides; however, despite the continuous advances, the scope of these methods remains limited. Recently a series of reports has advanced an alternative manifold in which thio(esters) are subject to transition-metal-catalyzed decarbonylation, which (1) permits to exploit ubiquitous carboxylic acids as highly desirable and orthogonal precursors to aryl halides; (2) overcomes the issues of high concentration of thiolate anion leading to catalyst poisoning; (3) enables for novel disconnections not easily available from aryl halides; and (4) introduces new concepts in catalysis.
Collapse
Affiliation(s)
- Chengwei Liu
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, Jiangsu 210044 (China)
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102 (United States)
| |
Collapse
|
14
|
Bie F, Liu X, Cao H, Shi Y, Zhou T, Szostak M, Liu C. Pd-Catalyzed Double-Decarbonylative Aryl Sulfide Synthesis through Aryl Exchange between Amides and Thioesters. Org Lett 2021; 23:8098-8103. [PMID: 34609150 DOI: 10.1021/acs.orglett.1c03232] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the palladium-catalyzed double-decarbonylative synthesis of aryl thioethers by an aryl exchange reaction between amides and thioesters. In this method, amides serve as aryl donors and thioesters are sulfide donors, enabling the synthesis of valuable aryl sulfides. The use of Pd/Xantphos without any additives has been identified as the catalytic system promoting the aryl exchange by C(O)-N/C(O)-S cleavages. The method is amenable to a wide variety of amides and sulfides.
Collapse
Affiliation(s)
- Fusheng Bie
- Shandong Lunan Coal Chemical Research Institute of Engineering and Technology, Zaozhuang University, 1 Bei'an Road, Zaozhuang, Shandong 277160, China
| | - Xuejing Liu
- Shandong Lunan Coal Chemical Research Institute of Engineering and Technology, Zaozhuang University, 1 Bei'an Road, Zaozhuang, Shandong 277160, China
| | - Han Cao
- Shandong Lunan Coal Chemical Research Institute of Engineering and Technology, Zaozhuang University, 1 Bei'an Road, Zaozhuang, Shandong 277160, China
| | - Yijun Shi
- Shandong Lunan Coal Chemical Research Institute of Engineering and Technology, Zaozhuang University, 1 Bei'an Road, Zaozhuang, Shandong 277160, China
| | - Tongliang Zhou
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Chengwei Liu
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, Jiangsu 210044, China
| |
Collapse
|
15
|
Zhou JY, Tian R, Zhu YM. Nickel-Catalyzed Selective Decarbonylation of α-Amino Acid Thioester: Aminomethylation of Mercaptans. J Org Chem 2021; 86:12148-12157. [PMID: 34397221 DOI: 10.1021/acs.joc.1c01480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nickel-catalyzed aminomethylation of mercaptans has been disclosed that offers efficient and expedient access to synthesize α-aminosulfides. The intramolecular fragment coupling shows excellent chemoselectivity. This transformation shows good functional-group compatibility, tolerates a wide range of electron-withdrawing, electron-neutral, and electron-donating substituents in this process, and can serve as a powerful synthetic tool for the synthesis of α-aminosulfides at a gram scale. Thus, the newly developed methodology enables a facile route for C-S bond formation in a straightforward fashion.
Collapse
Affiliation(s)
- Jing-Ya Zhou
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Rui Tian
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yong-Ming Zhu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
16
|
Lai YL, Yan S, He D, Zhou LZ, Chen ZS, Du YL, Li J. Palladium-catalyzed bisthiolation of terminal alkynes for the assembly of diverse ( Z)-1,2-bis(arylthio)alkene derivatives. RSC Adv 2021; 11:28447-28451. [PMID: 35478536 PMCID: PMC9037987 DOI: 10.1039/d1ra05773a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/18/2021] [Indexed: 01/19/2023] Open
Abstract
An efficient and straightforward palladium-catalyzed three-component cascade bisthiolation of terminal alkynes and arylhydrazines with sodium thiosulfate (Na2S2O3) as the sulfur source for the assembly of functionalized (Z)-1,2-bis(arylthio)alkene derivatives is described. Using 0.5 mol% IPr–Pd–Im–Cl2 as the catalyst, a wide range of terminal alkynes and arylhydrazines are well tolerated, thus producing the desired products in good yields with good functional group tolerance and excellent regioselectivity. Moreover, this protocol could be readily scaled up, showing potential applications in organic synthesis and material science. An efficient palladium-catalyzed bisthiolation of terminal alkynes and arylhydrazines with Na2S2O3 as the sulfur source for the assembly of (Z)-1,2-bis(arylthio)alkene derivatives is described.![]()
Collapse
Affiliation(s)
- Yin-Long Lai
- College of Chemistry and Civil Engineering, Shaoguan University Shaoguan 512005 P. R. China
| | - Shaoxi Yan
- College of Chemistry and Civil Engineering, Shaoguan University Shaoguan 512005 P. R. China
| | - Dan He
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Li-Zhen Zhou
- College of Chemistry and Civil Engineering, Shaoguan University Shaoguan 512005 P. R. China
| | - Zi-Shen Chen
- College of Chemistry and Civil Engineering, Shaoguan University Shaoguan 512005 P. R. China
| | - Yu-Long Du
- College of Chemistry and Civil Engineering, Shaoguan University Shaoguan 512005 P. R. China
| | - Jianxiao Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China .,Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology Guangzhou 510640 China
| |
Collapse
|