1
|
Łapczuk A, Ríos-Gutiérrez M. Mechanistic Aspects of [3+2] Cycloaddition Reaction of Trifluoroacetonitrile with Diarylnitrilimines in Light of Molecular Electron Density Theory Quantum Chemical Study. Molecules 2024; 30:85. [PMID: 39795142 PMCID: PMC11722534 DOI: 10.3390/molecules30010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
In this study, we investigated the [3+2] cycloaddition reaction of CF3CN (TFAN) with nitrilimine (NI) to produce 1,2,4-triazole and compared the resulting isomers. We determined the preferred reaction pathway by examining the electrophilic and nucleophilic properties of the reaction substrates, performing thermodynamic calculations for the individual pathways, and comparing them with the experimental results.
Collapse
Affiliation(s)
- Agnieszka Łapczuk
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Mar Ríos-Gutiérrez
- Department of Organic Chemistry, University of Valencia, Dr. Moliner 50, Burjassot, 46100 Valencia, Spain
| |
Collapse
|
2
|
Kanzouai Y, Laghmari M, Yamari I, Bouzammit R, Bahsis L, Benali T, Chtita S, Bakhouch M, Akhazzane M, El Kouali M, Hammani K, Al Houari G. Chromone-isoxazole hybrids molecules: synthesis, spectroscopic, MEDT, ELF, antibacterial, ADME-Tox, molecular docking and MD simulation investigations. J Biomol Struct Dyn 2024; 42:6410-6424. [PMID: 37817499 DOI: 10.1080/07391102.2023.2266022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/01/2023] [Indexed: 10/12/2023]
Abstract
A mechanistic study was performed within the molecular electron density theory at the B3LYP/6-311G (d,p) computational level to explain the regioselectivity observed. An electron localization function analysis was also performed, and the results confirm the zwitterionic-type (zw-type) mechanism of the cycloaddition reactions between nitrile oxide and alkylated 4H-chromene-2-carboxylate derivatives and shed more light on the obtained regioselectivity experimentally. In silico studies on the pharmacokinetics, ADME and toxicity tests of the compounds were also performed, and it was projected that compounds 5a, 5b, 5c and 5d are pharmacokinetic and have favorable ADME profiles. Moreover, docking and molecular dynamics investigations were conducted to evaluate the interactions, orientation and conformation of the target compounds on the active sites of four distinct enzymes. The results of this investigation showed that two compounds, 5a and 5c, interacted effectively with the S. aureus active site while maintaining acceptable binding energy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Youssra Kanzouai
- Engineering Laboratory of Organometallic and Molecular Materials and Environment, Department of Chemistry, Faculty of Sciences Dhar El Mahraz, University of Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Mustapha Laghmari
- Laboratory of Natural Resources and Environment, Department of Biology Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Taza, Morocco
| | - Imane Yamari
- Laboratory of Analytical and Molecular Chemistry, Department of Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Rachid Bouzammit
- Engineering Laboratory of Organometallic and Molecular Materials and Environment, Department of Chemistry, Faculty of Sciences Dhar El Mahraz, University of Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Lahoucine Bahsis
- Laboratoire de Chimie Analytique et Moléculaire, LCAM, Département de Chimie, Faculté Polydisciplinaire de Safi, Université Cadi Ayyad, Safi, Morocco
| | - Taoufiq Benali
- Laboratory of Natural Resources and Environment, Department of Biology Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Taza, Morocco
- Environment and Health Team, Polydisciplinary Faculty of Safi, Department of Biology, Cadi Ayyad University, Safi, Morocco
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Department of Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Mohamed Bakhouch
- Bioorganic Chemistry Team, Department of Chemistry, Faculty of Sciences, University Chouaïb Doukkali, El Jadida, Morocco
| | - Mohamed Akhazzane
- Cité de l'innovation, Université Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - M'hammed El Kouali
- Laboratory of Analytical and Molecular Chemistry, Department of Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Khalil Hammani
- Laboratory of Natural Resources and Environment, Department of Biology Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Taza, Morocco
| | - Ghali Al Houari
- Engineering Laboratory of Organometallic and Molecular Materials and Environment, Department of Chemistry, Faculty of Sciences Dhar El Mahraz, University of Sidi Mohamed Ben Abdellah, Fez, Morocco
| |
Collapse
|
3
|
Chalkha M, Nour H, Chebbac K, Nakkabi A, Bahsis L, Bakhouch M, Akhazzane M, Bourass M, Chtita S, Bin Jardan YA, Augustyniak M, Bourhia M, Aboul-Soud MA, El Yazidi M. Synthesis, Characterization, DFT Mechanistic Study, Antimicrobial Activity, Molecular Modeling, and ADMET Properties of Novel Pyrazole-isoxazoline Hybrids. ACS OMEGA 2022; 7:46731-46744. [PMID: 36570248 PMCID: PMC9773794 DOI: 10.1021/acsomega.2c05788] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
A series of new heterocycle hybrids incorporating pyrazole and isoxazoline rings was successfully synthesized, characterized, and evaluated for their antimicrobial responses. The synthesized compounds were obtained utilizing N-alkylation and 1,3-dipolar cycloaddition reactions, as well as their structures were established through spectroscopic methods and confirmed by mass spectrometry. To get more light on the regioselective synthesis of new hybrid compounds, mechanistic studies were performed using DFT calculations with B3LYP/6-31G(d,p) basis set. Additionally, the results of the preliminary screening indicate that some of the examined hybrids showed potent antimicrobial activity, compared to standard drugs. The results confirm that the antimicrobial activity is strongly dependent on the nature of the substituents linked pyrazole and isoxazoline rings. Furthermore, molecular docking studies were conducted to highlight the interaction modes between the investigated hybrid compounds and the Escherichia coli and Candida albicans receptors. Notably, the results demonstrate that the investigated compounds have strong protein binding affinities. The stability of the formed complexes by the binding between the hybrid compound 6c, and the target proteins was also confirmed using a 100 ns molecular dynamics simulation. Finally, the prediction of ADMET properties suggests that almost all hybrid compounds possess good pharmacokinetic profiles and no signs of observed toxicity, except for compounds 6e, 6f, and 6g.
Collapse
Affiliation(s)
- Mohammed Chalkha
- Engineering
Laboratory of Organometallic, Molecular, Materials and Environment,
Faculty of Sciences Dhar EL Mahraz, Sidi
Mohamed Ben Abdellah University, P.O. Box 1796, 30000 Fez, Morocco
| | - Hassan Nour
- Laboratory
of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, P.O. Box 7955, Casablanca, Morocco
| | - Khalid Chebbac
- Laboratory
of Biotechnology Conservation and Valorisation of Natural Resources,
Faculty of Sciences Dhar El Mahraz, Sidi
Mohammed Ben Abdallah University, P.O.
Box 1796, Fez 30000, Morocco
| | - Asmae Nakkabi
- Engineering
Laboratory of Organometallic, Molecular, Materials and Environment,
Faculty of Sciences Dhar EL Mahraz, Sidi
Mohamed Ben Abdellah University, P.O. Box 1796, 30000 Fez, Morocco
| | - Lahoucine Bahsis
- Laboratory
of Analytical and Molecular Chemistry, Polydisciplinary Faculty, Cadi Ayyad University, P.O. Box 4162, Safi 46000, Morocco
- Department
of Chemistry, Faculty of Sciences of El Jadida, Chouaïb Doukkali University,
P.O. Box 20, El Jadida 24000, Morocco
| | - Mohamed Bakhouch
- Laboratory
of Bioorganic Chemistry, Department of Chemistry, Faculty of Sciences, Chouaïb Doukkali University, P.O. Box 24, El Jadida 24000, Morocco
| | - Mohamed Akhazzane
- Engineering
Laboratory of Organometallic, Molecular, Materials and Environment,
Faculty of Sciences Dhar EL Mahraz, Sidi
Mohamed Ben Abdellah University, P.O. Box 1796, 30000 Fez, Morocco
- Cité
de l’innovation, Université
Sidi Mohamed Ben Abdellah, Route Immouzer, P.O. Box 2626, 30000 Fez, Morocco
| | - Mohamed Bourass
- Université
de Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 351 Cours de la Libération, F-33405 Talence, Cédex France
| | - Samir Chtita
- Laboratory
of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, P.O. Box 7955, Casablanca, Morocco
| | - Yousef A. Bin Jardan
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, 11451 Riyadh, Saudi Arabia
| | - Maria Augustyniak
- Institute
of Biology, Biotechnology and Environmental Protection, Faculty of
Natural Sciences, University of Silesia
in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Mohammed Bourhia
- Higher
Institute of Nursing Professions and Technical Health, Laayoune 70000, Morocco
| | - Mourad A.M. Aboul-Soud
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University,
P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Mohamed El Yazidi
- Engineering
Laboratory of Organometallic, Molecular, Materials and Environment,
Faculty of Sciences Dhar EL Mahraz, Sidi
Mohamed Ben Abdellah University, P.O. Box 1796, 30000 Fez, Morocco
| |
Collapse
|
4
|
Ríos-Gutiérrez M, Domingo LR, Jasiński R. Unveiling the high reactivity of experimental pseudodiradical azomethine ylides within molecular electron density theory. Phys Chem Chem Phys 2022; 25:314-325. [PMID: 36477950 DOI: 10.1039/d2cp05032c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The [3+2] cycloaddition (32CA) reactions of N-methyl azomethine ylide (AY) with styrene, benzaldehyde and methyl 2-formyl-benzoate (MFB) were studied within molecular electron density theory (MEDT), at the ωB97X-D/6-311G(d) computational level, in order to characterize the reactivity of an experimental pseudodiradical TAC for the first time. ELF topological analysis indicates that AY presents a pseudodiradical structure. Analysis of CDFT reactivity indices allows classifying AY as a supernucleophile; while styrene is classified as a moderate electrophile, benzaldehyde and MFB are classified as strong electrophiles. The 32CA reaction with MFB is the most favorable one with a relatively low activation Gibbs free energy of 6.9 kcal mol-1, being irreversible and completely endo stereo- and chemo-selective towards the carbonyl group, a behavior predicted by the analysis of the Parr functions. The bonding evolution theory (BET) study indicates that while the 32CA reaction of AY with styrene is characterized as a pdr-type 32CA reaction, the one involving benzaldehyde follows a pmr-type mechanism prompted by the presence of the carbonyl group. The present MEDT study describes in detail the tunable high reactivity of one of the few experimentally available pseudodiradical TACs, showing that the mechanism of 32CA reactions can be modified not only by changing the electronic structure of TACs through proper substitution but also by the nature of their opposing ethylene derivative.
Collapse
Affiliation(s)
- Mar Ríos-Gutiérrez
- Department of Organic Chemistry, University of Valencia, Dr Moliner 50, Burjassot, 46100 Valencia, Spain.
| | - Luis R Domingo
- Department of Organic Chemistry, University of Valencia, Dr Moliner 50, Burjassot, 46100 Valencia, Spain.
| | - Radomir Jasiński
- Faculty of Chemical Engineering and Technology, Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland.
| |
Collapse
|
5
|
Kula K, Łapczuk A, Sadowski M, Kras J, Zawadzińska K, Demchuk OM, Gaurav GK, Wróblewska A, Jasiński R. On the Question of the Formation of Nitro-Functionalized 2,4-Pyrazole Analogs on the Basis of Nitrylimine Molecular Systems and 3,3,3-Trichloro-1-Nitroprop-1-Ene. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238409. [PMID: 36500503 PMCID: PMC9739753 DOI: 10.3390/molecules27238409] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022]
Abstract
Experimental and theoretical studies on the reaction between (E)-3,3,3-trichloro-1-nitroprop-1-ene and N-(4-bromophenyl)-C-arylnitrylimine were performed. It was found that the title process unexpectedly led to 1-(4-bromophenyl)-3-phenyl-5-nitropyrazole instead of the expected Δ2-pyrazoline molecular system. This was the result of a unique CHCl3 elimination process. The observed mechanism of transformation was explained in the framework of the molecular electron density theory (MEDT). The theoretical results showed that both of the possible channels of [3 + 2] cycloaddition were favorable from a kinetic point of view, due to which the creation of 1-(4-bromophenyl)-3-aryl-4-tricholomethyl-5-nitro-Δ2-pyrazoline was more probable. On the other hand, according to the experimental data, the presented reactions occurred with full regioselectivity.
Collapse
Affiliation(s)
- Karolina Kula
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
- Correspondence: (K.K.); (A.Ł.); (R.J.)
| | - Agnieszka Łapczuk
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
- Correspondence: (K.K.); (A.Ł.); (R.J.)
| | - Mikołaj Sadowski
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
| | - Jowita Kras
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
| | - Karolina Zawadzińska
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
| | - Oleg M. Demchuk
- Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynow 1J, 20-708 Lublin, Poland
| | - Gajendra Kumar Gaurav
- Sustainable Process Integration Laboratory—SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology—VUT Brno, Technická 2896/2, 616-69 Brno, Czech Republic
| | - Aneta Wróblewska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Radomir Jasiński
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
- Correspondence: (K.K.); (A.Ł.); (R.J.)
| |
Collapse
|
6
|
Mohammadi M, Siadati SA, Ahmadi S, Habibzadeh S, Poor Heravi MR, Hossaini Z, Vessally E. Carbon fixation of CO2 via cyclic reactions with borane in gaseous atmosphere leading to formic acid (and metaboric acid); A potential energy surface (PES) study. Front Chem 2022; 10:1003086. [PMID: 36324523 PMCID: PMC9620423 DOI: 10.3389/fchem.2022.1003086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Carbon dioxide (CO2), a stable gaseous species, occupies the troposphere layer of the atmosphere. Following it, the environment gets warmer, and the ecosystem changes as a consequence of disrupting the natural order of our life. Due to this, in the present reasearch, the possibility of carbon fixation of CO2 by using borane was investigated. To conduct this, each of the probable reaction channels between borane and CO2 was investigated to find the fate of this species. The results indicate that among all the channels, the least energetic path for the reaction is reactant complex (RC) to TS (A-1) to Int (A-1) to TS (A-D) to formic acid (and further meta boric acid production from the transformation of boric acid). It shows that use of gaseous borane might lead to controlling these dangerous greenhouse gases which are threatening the present form of life on Earth, our beautiful, fragile home.
Collapse
Affiliation(s)
- Marziyeh Mohammadi
- Department of Chemistry, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
- *Correspondence: Marziyeh Mohammadi, ; Seyyed Amir Siadati,
| | - Seyyed Amir Siadati
- Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
- *Correspondence: Marziyeh Mohammadi, ; Seyyed Amir Siadati,
| | - Sheida Ahmadi
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | | | | | | | - Esmail Vessally
- Department of Chemistry, Payame Noor University, Tehran, Iran
| |
Collapse
|
7
|
A Molecular Electron Density Theory Study of the [3+2] Cycloaddition Reaction of an Azomethine Ylide with an Electrophilic Ethylene Linked to Triazole and Ferrocene Units. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196532. [PMID: 36235069 PMCID: PMC9571756 DOI: 10.3390/molecules27196532] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022]
Abstract
The [3+2] cycloaddition (32CA) reaction of an azomethine ylide (AY) with an electrophilic ethylene linked to triazole and ferrocene units has been studied within the Molecular Electron Density Theory (MEDT) at the ωB97X-D/6-311G(d,p) level. The topology of the electron localization function (ELF) of this AY allows classifying it as a pseudo(mono)radical species characterized by the presence of two monosynaptic basins, integrating a total of 0.76 e, at the C1 carbon. While the ferrocene ethylene has a strong electrophilic character, the AY is a supernucleophile, suggesting that the corresponding 32CA reaction has a high polar character and a low activation energy. The most favorable ortho/endo reaction path presents an activation enthalpy of 8.7 kcal·mol-1, with the 32CA reaction being exergonic by -42.1 kcal·mol-1. This reaction presents a total endo stereoselectivity and a total ortho regioselectivity. Analysis of the global electron density transfer (GEDT) at the most favorable TS-on (0.23 e) accounts for the high polar character of this 32CA reaction, classified as forward electron density flux (FEDF). The formation of two intermolecular hydrogen bonds between the two interacting frameworks at the most favorable TS-on accounts for the unexpected ortho regioselectivity experimentally observed.
Collapse
|
8
|
Domingo LR, Ríos‐Gutiérrez M, Acharjee N. Unveiling the
cb‐type
Intramolecular [3+2] Cycloaddition Reactions of Fluorinated Azomethine Ylides to Ester Carbonyls with a Molecular Electron Density Theory Perspective. ChemistrySelect 2022. [DOI: 10.1002/slct.202201845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Luis R. Domingo
- Department of Organic Chemistry University of Valencia, Dr. Moliner 50 Burjassot, E 46100 Valencia Spain
| | - M. Ríos‐Gutiérrez
- Department of Organic Chemistry University of Valencia, Dr. Moliner 50 Burjassot, E 46100 Valencia Spain
| | - Nivedita Acharjee
- Department of Chemistry Durgapur Government College J. N. Avenue Durgapur West Bengal 713214 India
| |
Collapse
|
9
|
On the Mechanism of the Synthesis of Nitrofunctionalised Δ2-Pyrazolines via [3+2] Cycloaddition Reactions between α-EWG-Activated Nitroethenes and Nitrylimine TAC Systems. ORGANICS 2022. [DOI: 10.3390/org3010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We investigated the reactivity of different substituted nitrylimine-type three atom components (TACs) in [3+2] cycloaddition (32CAs) reactions with electrophilically activated nitroethenes within molecular electron density theory (MEDT). In parallel research, the molecular mechanism of the considered transformation was examined through analysis of all possible reaction channels and full optimization of all critical structures. In particular, the existence of zwitterionic intermediates on reaction paths was verified. On the basis of the bonding evolution theory (BET), the mechanism of the 32CA reaction between C,N-diphenylnitrylimine and (E)-2-phenyl-1-cyano-1-nitroethene should be treated as a one-step two-stage mechanism.
Collapse
|
10
|
Zawadzińska K, Ríos-Gutiérrez M, Kula K, Woliński P, Mirosław B, Krawczyk T, Jasiński R. The Participation of 3,3,3-Trichloro-1-nitroprop-1-ene in the [3 + 2] Cycloaddition Reaction with Selected Nitrile N-Oxides in the Light of the Experimental and MEDT Quantum Chemical Study. Molecules 2021; 26:6774. [PMID: 34833866 PMCID: PMC8622200 DOI: 10.3390/molecules26226774] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022] Open
Abstract
The regioselective zw-type [3 + 2] cycloaddition (32CA) reactions of a series of aryl-substituted nitrile N-oxides (NOs) with trichloronitropropene (TNP) have been both experimentally and theoretically studied within the Molecular Electron Density Theory (MEDT). Zwitterionic NOs behave as moderate nucleophiles while TNP acts as a very strong electrophile in these polar 32CA reactions of forward electron density flux, which present moderate activation Gibbs free energies of 22.8-25.6 kcal·mol-1 and an exergonic character of 28.4 kcal·mol-1 that makes them irreversible and kinetically controlled. The most favorable reaction is that involving the most nucleophilic MeO-substituted NO. Despite Parr functions correctly predicting the experimental regioselectivity with the most favorable O-CCCl3 interaction, these reactions follow a two-stage one-step mechanism in which formation of the O-C(CCl3) bond takes place once the C-C(NO2) bond is already formed. The present MEDT concludes that the reactivity differences in the series of NOs come from their different nucleophilic activation and polar character of the reactions, rather than any mechanistic feature.
Collapse
Affiliation(s)
- Karolina Zawadzińska
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (K.Z.); (K.K.); (P.W.)
| | - Mar Ríos-Gutiérrez
- Department of Organic Chemistry, University of Valencia, Dr. Moliner 50, Burjassot, 46100 Valencia, Spain
| | - Karolina Kula
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (K.Z.); (K.K.); (P.W.)
| | - Przemysław Woliński
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (K.Z.); (K.K.); (P.W.)
| | - Barbara Mirosław
- Department of General and Coordination Chemistry and Crystallography, Maria Curie-Sklodowska University in Lublin, Pl. Marii Curie-Sklodowskiej 3, 20-031 Lublin, Poland;
| | - Tomasz Krawczyk
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland;
| | - Radomir Jasiński
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (K.Z.); (K.K.); (P.W.)
| |
Collapse
|