1
|
Zafar A, Iqbal MA, Iram G, Shoukat US, Jamil F, Saleem M, Yousif M, Abidin ZU, Asad M. Advances in organocatalyzed synthesis of organic compounds. RSC Adv 2024; 14:20365-20389. [PMID: 38919284 PMCID: PMC11197984 DOI: 10.1039/d4ra03046j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
The recent advancements in utilizing organocatalysts for the synthesis of organic compounds have been described in this review by focusing on their simplicity, effectiveness, reproducibility, and high selectivity which lead to excellent product yields. The organocatalytic methods for various derivatives, such as indoles, pyrazolones, anthrone-functionalized benzylic amines, maleimide, polyester, phthalimides, dihydropyrimidin, heteroaryls, N-aryl benzimidazoles, stilbenoids, quinazolines, quinolines, and oxazolidinones have been specifically focused. The review provides more understanding by delving into potential reaction mechanisms. We anticipate that this collection of data and findings on successful synthesis of diverse compound derivatives will serve as valuable resources and stimulating current and future research efforts in organocatalysis and industrial chemistry.
Collapse
Affiliation(s)
- Ayesha Zafar
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Muhammad Adnan Iqbal
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
- Organometallic and Coordination Chemistry Laboratory, Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Ghazala Iram
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Umar Sohail Shoukat
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Faisal Jamil
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Muhammad Saleem
- Department of Basic and Applied Chemistry, Faculty of Sciences and Technology, University of Central Punjab Lahore Pakistan
| | - Muhammad Yousif
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Zain Ul Abidin
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Mohammad Asad
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| |
Collapse
|
2
|
Watanabe K, Mao Q, Zhang Z, Hata M, Kodera M, Kitagishi H, Niwa T, Hosoya T. Clickable bisreactive small gold nanoclusters for preparing multifunctionalized nanomaterials: application to photouncaging of an anticancer molecule. Chem Sci 2024; 15:1402-1408. [PMID: 38274077 PMCID: PMC10806826 DOI: 10.1039/d3sc04365g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
In this study, we successfully synthesized a small-sized gold nanocluster (2 nm) coated with homogeneous tripeptides bearing azido and amino groups that enable facile multifunctionalizations. Using sodium phenoxide to reduce tetrachloroauric(iii) acid in the presence of the cysteine-containing tripeptide, we efficiently prepared the gold nanoclusters without damaging the azido group. We then utilized this clickable bisreactive nanocluster as a versatile platform for synthesizing multifunctionalized gold nanomaterials. The resulting nanoclusters were conjugated with an anticancer compound connected to an indolizine moiety for photoinduced uncaging, a photodynamic therapy agent acting as a photosensitizer for uncaging, and a cyclic RGD peptide. The cytotoxicity of the multifunctionalized gold nanoclusters was demonstrated through red light irradiation of human lung cancer-derived A549 cells treated with the synthesized nanomaterials. The significant cytotoxicity exhibited by the cells underscores the potential utility of this method in advanced cancer therapies.
Collapse
Affiliation(s)
- Kenji Watanabe
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research Kobe 650-0047 Japan
| | - Qiyue Mao
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University Kyotanabe Kyoto 610-0321 Japan
| | - Zhouen Zhang
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research Kobe 650-0047 Japan
| | - Machi Hata
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University Kyotanabe Kyoto 610-0321 Japan
| | - Masahito Kodera
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University Kyotanabe Kyoto 610-0321 Japan
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University Kyotanabe Kyoto 610-0321 Japan
| | - Takashi Niwa
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research Kobe 650-0047 Japan
- Laboratory for Molecular Transformation Chemistry, Graduate School of Pharmaceutical Sciences, Kyushu University Higashi-ku Fukuoka 812-8582 Japan
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) Chiyoda-ku Tokyo 101-0062 Japan
| | - Takamitsu Hosoya
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research Kobe 650-0047 Japan
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) Chiyoda-ku Tokyo 101-0062 Japan
| |
Collapse
|
3
|
Priyanka, Rani P, Kiran, Sindhu J. Indolizine: A Promising Framework for Developing a Diverse Array of C−H Functionalized Hybrids. ChemistrySelect 2023. [DOI: 10.1002/slct.202203531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Priyanka
- Department of Chemistry, COBS&H CCSHAU Hisar 125004 India
| | - Payal Rani
- Department of Chemistry, COBS&H CCSHAU Hisar 125004 India
| | - Kiran
- Department of Chemistry, COBS&H CCSHAU Hisar 125004 India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H CCSHAU Hisar 125004 India
| |
Collapse
|
4
|
Wu S, Hu D, Wan X, Zhao J, He Q, Su Z, Cao H. Photocatalytic C-H Disulfuration for the Preparation of Indolizine-3-disulfides. J Org Chem 2022; 87:16297-16306. [PMID: 36417299 DOI: 10.1021/acs.joc.2c01871] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A photocatalytic C-H disulfuration of indolizines was developed, giving an approach to a wide variety of indolizine-3-disulfides with good yields. Trisulfide dioxides were explored as a high-efficient disulfuration reagent. This disulfuration reaction could be scaled up to grams. Mechanistic studies support a photoinduced pathway involving the generation of indolizine cationic radicals. A bulky alkyl substituent on terminal sulfur of trisulfide dioxide A was necessary for selective formation of disulfide over monosulfide.
Collapse
Affiliation(s)
- Songxin Wu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Dangzhong Hu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Xuegui Wan
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Jiaji Zhao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Qiuxing He
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Zhengquan Su
- Guangdong Engineering Research Centre of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Centre of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China.,Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan 528437, China
| |
Collapse
|
5
|
Red light-induced conjugation of amines through amide bond formation triggered via photooxidation of 3-acylindolizines. Commun Chem 2022; 5:91. [PMID: 36697938 PMCID: PMC9814406 DOI: 10.1038/s42004-022-00712-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/21/2022] [Indexed: 01/28/2023] Open
Abstract
The development of a conjugation method initiated by irradiation of long-wavelength light (>500 nm) to prepare densely functionalized molecules while avoiding undesired photodegradation has attracted considerable attention. Here we show an amide bond formation method based on the photoreaction of 3-acylindolizines in the presence of amines triggered via red-light irradiation. Photooxidation of 3-acylindolizines using a catalytic amount of a photosensitizer and red light-emitting diodes (660 nm) affords the corresponding conjugated amides in nearly quantitative yields within <5 min. This transformation can be performed in aqueous organic solvents and is applicable to diverse aliphatic amines with various functional groups, including the moieties responsive to short-wavelength light.
Collapse
|
6
|
Liu H, Ren S, Ma C, Shi G, Li Y, Duan G, Ge Y. Copper‐Promoted Direct Decarboxylative C3‐Acylation of Electron‐Rich Indolizines Using α‐Keto Acids. ChemistrySelect 2022. [DOI: 10.1002/slct.202104426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hao Liu
- Department of Chemistry and Pharmaceutical Engineering Shandong First Medical University & Shandong Academy of Medical Sciences No. 619, Changcheng Road Taian Shandong 271016 China
| | - Shaohong Ren
- Department of Chemistry and Pharmaceutical Engineering Shandong First Medical University & Shandong Academy of Medical Sciences No. 619, Changcheng Road Taian Shandong 271016 China
| | - Chuanjun Ma
- Department of Chemistry and Pharmaceutical Engineering Shandong First Medical University & Shandong Academy of Medical Sciences No. 619, Changcheng Road Taian Shandong 271016 China
| | - Guowei Shi
- Department of Chemistry and Pharmaceutical Engineering Shandong First Medical University & Shandong Academy of Medical Sciences No. 619, Changcheng Road Taian Shandong 271016 China
| | - Yongchao Li
- Department of Chemistry and Pharmaceutical Engineering Shandong First Medical University & Shandong Academy of Medical Sciences No. 619, Changcheng Road Taian Shandong 271016 China
| | - Guiyun Duan
- Department of Chemistry and Pharmaceutical Engineering Shandong First Medical University & Shandong Academy of Medical Sciences No. 619, Changcheng Road Taian Shandong 271016 China
| | - Yanqing Ge
- Department of Chemistry and Pharmaceutical Engineering Shandong First Medical University & Shandong Academy of Medical Sciences No. 619, Changcheng Road Taian Shandong 271016 China
| |
Collapse
|
7
|
Lin Q, Guo R, Hamao K, Takagi R, Abe M. 2-(4-Nitrophenyl)-1H-indolyl-3-methyl chromophore: A versatile photocage that responds to visible-light one-photon and near-infrared-light two-photon excitations. CHEM LETT 2021. [DOI: 10.1246/cl.210668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Qianghua Lin
- Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima City, Hiroshima 739-8526, Japan
| | - Runzhao Guo
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima City, Hiroshima 739-8526, Japan
| | - Kozue Hamao
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima City, Hiroshima 739-8526, Japan
| | - Ryukichi Takagi
- Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima City, Hiroshima 739-8526, Japan
| | - Manabu Abe
- Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima City, Hiroshima 739-8526, Japan
- Hiroshima University Research Center for Photo-Drug Delivery Systems, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|