1
|
Wang X, Yue D, Yang C, Xu M, Chang L, Geng C, Duan S, Shen X. La(OTf) 3-Catalyzed Benzannulation of 2-Arylidene-1 H-indene-1,3(2 H)-diones with Enamino Esters: Direct Access to Functionalized Fluorenone Derivatives. J Org Chem 2025; 90:3825-3833. [PMID: 40052733 DOI: 10.1021/acs.joc.4c02369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
An attractive method for the preparation of functional fluorenone derivatives has been developed via La(OTf)3-catalyzed benzannulation of 2-arylidene-1H-indene-1,3(2H)-diones with enamino esters. The reaction involves Michael addition, intramolecular cyclization, dehydration, and aromatization in a one-step process and affords a wide range of functional fluorenone derivatives in moderate to good yields. Moreover, this protocol provides several advantages, including broad substrate scope, readily available materials, high atom economy, and applicability for large-scale synthesis.
Collapse
Affiliation(s)
- Xuequan Wang
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan 661100, P. R. China
| | - Dan Yue
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan 661100, P. R. China
| | - Changhui Yang
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan 661100, P. R. China
| | - Mingde Xu
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan 661100, P. R. China
| | - Longguiyu Chang
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan 661100, P. R. China
| | - Chunyan Geng
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan 661100, P. R. China
| | - Suyue Duan
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan 661100, P. R. China
| | - Xianfu Shen
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, Yunnan 655011, P. R. China
| |
Collapse
|
2
|
Li Y, Sun L, Huang S, Xu K, Zeng CC. Electrochemical quinuclidine-mediated Minisci-type acylation of N-heterocycles with aldehydes. Chem Commun (Camb) 2024; 60:6174-6177. [PMID: 38804811 DOI: 10.1039/d4cc00800f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The electro-generation of acyl radicals from both aromatic and aliphatic aldehydes remains an unmet challenge. We provide a solution to this challenge by merging electro-oxidation and a quinuclidine-mediated hydrogen atom transfer strategy. The generation of acyl radicals at decreased applied potentials compared to that of formyl oxidation exhibits excellent functional group compatibility.
Collapse
Affiliation(s)
- Yongmei Li
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| | - Liangbo Sun
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| | - Shengyang Huang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| | - Kun Xu
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| | - Cheng-Chu Zeng
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
3
|
He H, Pan CM, Hou ZW, Sun M, Wang L. Organocatalyzed Photoelectrochemistry for the Generation of Acyl and Phosphoryl Radicals through Hydrogen Atom-Transfer Process. J Org Chem 2024. [PMID: 38761155 DOI: 10.1021/acs.joc.4c00189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
An organocatalyzed photoelectrochemical method for the generation of acyl and phosphoryl radicals from formamides, aldehydes, and phosphine oxides has been developed. This protocol utilizes 9,10-phenanthrenequinone (PQ) as both a molecular catalyst and a hydrogen atom-transfer (HAT) reagent, eliminating the requirement for external metal-based reagents, HAT reagents, and oxidants. The generated acyl radicals can be applied to a range of radical-mediated transformation reactions, including C-H carbamoylation of heteroarenes, intermolecular tandem radical cyclization of CF3-substituted N-arylacrylamides, as well as intramolecular cyclization reactions. The use of acyl radicals in these transformations offers an efficient and sustainable approach to accessing structurally diverse carbonyl compounds.
Collapse
Affiliation(s)
- Hong He
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Cai-Mi Pan
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Zhong-Wei Hou
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Manman Sun
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Lei Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| |
Collapse
|
4
|
Rani S, Aslam S, Lal K, Noreen S, Alsader KAM, Hussain R, Shirinfar B, Ahmed N. Electrochemical C-H/C-C Bond Oxygenation: A Potential Technology for Plastic Depolymerization. CHEM REC 2024; 24:e202300331. [PMID: 38063812 DOI: 10.1002/tcr.202300331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Indexed: 03/10/2024]
Abstract
Herein, we provide eco-friendly and safely operated electrocatalytic methods for the selective oxidation directly or with water, air, light, metal catalyst or other mediators serving as the only oxygen supply. Heavy metals, stoichiometric chemical oxidants, or harsh conditions were drawbacks of earlier oxidative cleavage techniques. It has recently come to light that a crucial stage in the deconstruction of plastic waste and the utilization of biomass is the selective activation of inert C(sp3 )-C/H(sp3 ) bonds, which continues to be a significant obstacle in the chemical upcycling of resistant polyolefin waste. An appealing alternative to chemical oxidations using oxygen and catalysts is direct or indirect electrochemical conversion. An essential transition in the chemical and pharmaceutical industries is the electrochemical oxidation of C-H/C-C bonds. In this review, we discuss cutting-edge approaches to chemically recycle commercial plastics and feasible C-C/C-H bonds oxygenation routes for industrial scale-up.
Collapse
Affiliation(s)
- Sadia Rani
- Department of Chemistry, The Women University Multan, Multan, 60000, Pakistan
| | - Samina Aslam
- Department of Chemistry, The Women University Multan, Multan, 60000, Pakistan
| | - Kiran Lal
- Department of Chemistry, The Women University Multan, Multan, 60000, Pakistan
| | - Sobia Noreen
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | | | - Riaz Hussain
- Department of Chemistry, University of Education Lahore, D.G. Khan Campus, 32200, Pakistan
| | - Bahareh Shirinfar
- West Herts College - University of Hertfordshire, Watford, WD17 3EZ, London, United Kingdom
| | - Nisar Ahmed
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| |
Collapse
|
5
|
Liu C, Yu J, Bao L, Zhang G, Zou X, Zheng B, Li Y, Zhang Y. Electricity-Promoted Friedel-Crafts Acylation of Biarylcarboxylic Acids. J Org Chem 2023; 88:3794-3801. [PMID: 36861957 DOI: 10.1021/acs.joc.2c03071] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
An electricity-promoted method for Friedel-Crafts acylation of biarylcarboxylic acids is described in this research. Various fluorenones can be accessed in up to 99% yields. During the acylation, electricity plays an essential role, which might motivate the chemical equilibrium by consuming the generated TFA. This study is predicted to provide an avenue to realize Friedel-Crafts acylation in a more environmentally friendly process.
Collapse
Affiliation(s)
- Chen Liu
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Jiage Yu
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Liang Bao
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Gaoyuan Zhang
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Xinyue Zou
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Bing Zheng
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Yiyi Li
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Yunfei Zhang
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
6
|
Bai F, Wang N, Bai Y, Ma X, Gu C, Dai B, Chen J. NHPI-Mediated Electrochemical α-Oxygenation of Amides to Benzimides. J Org Chem 2023. [PMID: 36866582 DOI: 10.1021/acs.joc.2c02700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
This report describes a mild electrochemical α-oxygenation of a wide range of linear and cyclic benzamides mediated by N-hydroxyphthalimide (NHPI) in an undivided cell using O2 as the oxygen source and 2,4,6-trimethylpyridine perchlorate as an electrolyte. The radical scavenger experiment and the 18O labeling experiment were carried out, which indicated the involvement of a radical pathway and suggested O2 as an oxygen source in the imides, respectively.
Collapse
Affiliation(s)
- Fang Bai
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, China
| | - Ning Wang
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, China
| | - Yinshan Bai
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, China
| | - Xiaowei Ma
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, China
| | - Chengzhi Gu
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, China
| | - Bin Dai
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, China
| | - Jianpeng Chen
- Hami Shuoyuan Chemical Co., Ltd, Xinjiang Uygur Autonomous Region 832000, China
| |
Collapse
|
7
|
Zhang H, Liang S, Wei D, Xu K, Zeng C. Electrocatalytic Generation of Acyl Radicals and Their Applications. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Haonan Zhang
- Faculty of Environmental and Life Beijing University of Technology 100 Pingleyuan Rd. 100124 Beijing China
| | - Sen Liang
- Beijing Key Laboratory of Flavor Chemistry Beijing Technology and Business University 100048 Beijing China
| | - Dengchao Wei
- Faculty of Environmental and Life Beijing University of Technology 100 Pingleyuan Rd. 100124 Beijing China
| | - Kun Xu
- Faculty of Environmental and Life Beijing University of Technology 100 Pingleyuan Rd. 100124 Beijing China
| | - Chengchu Zeng
- Faculty of Environmental and Life Beijing University of Technology 100 Pingleyuan Rd. 100124 Beijing China
| |
Collapse
|
8
|
Wang H, Zheng Y, Xu H, Zou J, Jin C. Metal-Free Synthesis of N-Heterocycles via Intramolecular Electrochemical C-H Aminations. Front Chem 2022; 10:950635. [PMID: 35795218 PMCID: PMC9251003 DOI: 10.3389/fchem.2022.950635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
N-heterocycles are key structural units in many drugs, biologically interesting molecules and functional materials. To avoid the residues of metal catalysts, the construction of N-heterocycles under metal-free conditions has attracted much research attention in academia and industry. Among them, the intramolecular electrochemical C-H aminations arguably constitute environmentally friendly methodologies for the metal-free construction of N-heterocycles, mainly due to the direct use of clean electricity as the redox agents. With the recent renaissance of organic electrosynthesis, the intramolecular electrochemical C-H aminations have undergone much progress in recent years. In this article, we would like to summarize the advances in this research field since 2019. The emphasis is placed on the reaction design and mechanistic insight. The challenges and future developments in the intramolecular electrochemical C-H aminations are also discussed.
Collapse
Affiliation(s)
- Huiqiao Wang
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, China
- *Correspondence: Huiqiao Wang, ; Congrui Jin,
| | - Yongjun Zheng
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, China
| | - Hucheng Xu
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, China
| | - Jiaru Zou
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, China
| | - Congrui Jin
- Department of Civil and Environmental Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States
- *Correspondence: Huiqiao Wang, ; Congrui Jin,
| |
Collapse
|
9
|
Kong Y, Wei K, Yan G. Radical coupling reactions of hydrazines via photochemical and electrochemical strategies. Org Chem Front 2022. [DOI: 10.1039/d2qo01348g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrazines are versatile building blocks in organic synthesis.
Collapse
Affiliation(s)
- Yilin Kong
- College of Jiyang, Zhejiang A&F University, Zhuji 311800, China
| | - Kangning Wei
- College of Jiyang, Zhejiang A&F University, Zhuji 311800, China
| | - Guobing Yan
- College of Jiyang, Zhejiang A&F University, Zhuji 311800, China
| |
Collapse
|