1
|
Wu L, He JB, Wei W, Pan HX, Wang X, Yang S, Liang Y, Tang GL, Zhou J. Three distinct strategies lead to programmable aliphatic C-H oxidation in bicyclomycin biosynthesis. Nat Commun 2025; 16:4651. [PMID: 40389404 PMCID: PMC12089406 DOI: 10.1038/s41467-025-58997-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 04/09/2025] [Indexed: 05/21/2025] Open
Abstract
The C-H bond functionalization has been widely used in chemical synthesis over the past decade. However, regio- and stereoselectivity still remain a significant challenge, especially for inert aliphatic C-H bonds. Here we report the mechanism of three Fe(II)/α-ketoglutarate-dependent dioxygenases in bicyclomycin synthesis, which depicts the natural tactic to sequentially hydroxylate specific C-H bonds of similar substrates (cyclodipeptides). Molecular basis by crystallographic studies, computational simulations, and site-directed mutagenesis reveals the exquisite arrangement of three enzymes using mutually orthogonal strategies to realize three different regio-selectivities. Moreover, this programmable selective hydroxylation can be extended to other cyclodipeptides. This evidence not only provides a naturally occurring showcase corresponding to the widely used methods in chemical catalysis but also expands the toolbox of biocatalysts to address the regioselective functionalization of C-H bonds.
Collapse
Affiliation(s)
- Lian Wu
- Key Laboratory of Synthetic Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, University of CAS, Shanghai, 200032, China
| | - Jun-Bin He
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of CAS, Shanghai, 200032, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Hai-Xue Pan
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of CAS, Shanghai, 200032, China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of CAS, Hangzhou, 310024, China
| | - Xin Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, University of CAS, Shanghai, 200032, China.
| | - Yong Liang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, 475004, China.
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Gong-Li Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of CAS, Shanghai, 200032, China.
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of CAS, Hangzhou, 310024, China.
| | - Jiahai Zhou
- State Key Laboratory of Microbial Technology, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
2
|
Feng X, Gao M, Wei W, Song W, Wen J, Wang H, Hu G, Li X, Gao C, Wu J. Fusing Engineered CYP109E1 and a New Reductase Domain for 25(OH)VD 3 Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10439-10448. [PMID: 40239188 DOI: 10.1021/acs.jafc.5c01010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
25-hydroxyvitamin D3 (25(OH)VD3) is an important daily nutritional supplement, and direct enzymatic C25 hydroxylation of vitamin D3 (VD3) to 25(OH)VD3 is a green and sustainable method. However, the low catalytic activity and electron transfer efficiency of redox partners of cytochrome P450 limited its production. Here, structure-guided semirational design of CYP109E1 led to the mutant CYP109E1M2, which showed a 2-fold increase in 25(OH)VD3 production compared to the wild-type. Furthermore, the novel reductase domain BmRD was first employed to construct a fusion protein with CYP109E1M2. Notably, truncating only two amino acids at the N-terminus of BmRD generated a fusion protein Chimera-2, resulting in a 38.5% increase in 25(OH)VD3 production. Under optimized conditions, the engineered strain Escherichia coli 03-2 produced 491.3 mg/L 25(OH)VD3 with a conversion of 49.0% and a space-time yield of 61.4 mg/(L·h). This work demonstrates the modification and optimization potential of P450 and lays a theoretical foundation for the industrialization of the 25(OH)VD3 biosynthesis.
Collapse
Affiliation(s)
- Xisong Feng
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Mengjian Gao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Wen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Hongyu Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiaomin Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Zhang H, Hirao H. Mechanism of Regio- and Enantioselective Hydroxylation of Arachidonic Acid Catalyzed by Human CYP2E1: A Combined Molecular Dynamics and Quantum Mechanics/Molecular Mechanics Study. J Chem Inf Model 2025; 65:2080-2092. [PMID: 39932478 DOI: 10.1021/acs.jcim.5c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Regio- and enantioselective hydroxylation of free fatty acids by human cytochrome P450 2E1 (CYP2E1) plays an important role in metabolic regulation and has significant pathological implications. Despite extensive research, the detailed hydroxylation mechanism of CYP2E1 remains incompletely understood. To clarify the origins of regioselectivity and enantioselectivity observed for CYP2E1-mediated fatty acid hydroxylation, molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) calculations were performed. MD simulations provided key insights into the proximity of arachidonic acid's carbon atoms to the reactive iron(IV)-oxo moiety in compound I (Cpd I), with the ω-1 position being closest, indicating higher reactivity at this site. QM/MM calculations identified hydrogen abstraction as the rate-determining step, with the ω-1S transition state exhibiting the lowest energy barrier, consistent with experimentally observed enantioselectivity. Energy decomposition analysis revealed that variations in quantum mechanical energy (ΔEQM) significantly influence reaction barriers, with the most efficient hydrogen abstraction occurring at the ω-1S and ω-2R positions. These findings underscore the importance of substrate positioning within the active site in determining product selectivity. Comparisons with two related P450s, P450BM3 and P450SPα, further highlighted the critical role of active site architecture and substrate positioning in modulating selectivity. While surrounding residues do not directly dictate product selectivity, they shape the active site environment and influence substrate positioning. Furthermore, our analysis revealed a previously unrecognized catalytic role of Ala299. These findings provide a deeper mechanistic understanding of human CYP2E1 and offer valuable insights for its precise engineering in targeted C-H functionalization.
Collapse
Affiliation(s)
- Honghui Zhang
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Hajime Hirao
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| |
Collapse
|
4
|
Jin L, Cheng S, Ding W, Huang J, van Eldik R, Ji L. Insight into chemically reactive metabolites of aliphatic amine pollutants: A de novo prediction strategy and case study of sertraline. ENVIRONMENT INTERNATIONAL 2024; 186:108636. [PMID: 38593692 DOI: 10.1016/j.envint.2024.108636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
The uncommon metabolic pathways of organic pollutants are easily overlooked, potentially leading to idiosyncratic toxicity. Prediction of their biotransformation associated with the toxic effects is the very purpose that this work focuses, to develop a de novo method to mechanistically predict the reactive toxicity pathways of uncommon metabolites from start aliphatic amine molecules, which employed sertraline triggered by CYP450 enzymes as a model system, as there are growing concerns about the effects on human health posed by antidepressants in the aquatic environment. This de novo prediction strategy combines computational and experimental methods, involving DFT calculations upon sequential growth, in vitro and in vivo assays, dissecting chemically reactive mechanism relevant to toxicity, and rationalizing the fundamental factors. Significantly, desaturation and debenzylation-aromatization as the emerging metabolic pathways of sertraline have been elucidated, with the detection of DNA adducts of oxaziridine metabolite in mice, highlighting the potential reactive toxicity. Molecular orbital analysis supports the reactivity preference for toxicological-relevant C-N desaturation over N-hydroxylation of sertraline, possibly extended to several other aliphatic amines based on the Bell-Evans-Polanyi principle. It was further validated toward some other wide-concerned aliphatic amine pollutants involving atrazine, ε-caprolactam, 6PPD via in silico and in vitro assays, thereby constituting a complete path for de novo prediction from case study to general applications.
Collapse
Affiliation(s)
- Lingmin Jin
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Shiyang Cheng
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China.
| | - Wen Ding
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Jingru Huang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Rudi van Eldik
- Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Egerlandstr. 1, 91058 Erlangen, Germany; Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Li Ji
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China.
| |
Collapse
|
5
|
Chatterjee R, Jindal G. Role of mutations in a chemoenzymatic enantiodivergent C(sp 3)-H insertion: exploring the mechanism and origin of stereoselectivity. Chem Sci 2023; 14:8810-8822. [PMID: 37621422 PMCID: PMC10445471 DOI: 10.1039/d3sc02788k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/23/2023] [Indexed: 08/26/2023] Open
Abstract
New-to-nature enzymes have emerged as powerful catalysts in recent years for streamlining various stereoselective organic transformations. While synthetic strategies employing engineered enzymes have witnessed proliferating success, there is limited clarity on the mechanistic front and more so when considering molecular-level insights into the role of selected mutations, dramatically escalating catalytic competency and selectivity. We have investigated the mechanism and correlation between mutations and exquisite stereoselectivity of a lactone carbene insertion into the C(sp3)-H bond of substituted aniline, catalyzed by two mutants of a cytochrome P450 variant, "P411" (engineered through directed evolution) in which the axial cysteine has been mutated to serine, utilizing various computational tools. The pivotal role of S264 and L/R328 mutations in the active site has been delineated computationally using two cluster models, thus rationalizing the enantiodivergence. This report provides much-needed insights into the origin of enantiodivergence, furnishing a mechanistic framework for understanding the anchoring effects of H-bond donor residues with the lactone ring. This study is expected to have important implications in the rational design of stereodivergent enzymes and toward successful in silico enzyme designing.
Collapse
Affiliation(s)
- Ritwika Chatterjee
- Department of Organic Chemistry, Chemical Sciences Division, Indian Institute of Science Bangalore 560012 India
| | - Garima Jindal
- Department of Organic Chemistry, Chemical Sciences Division, Indian Institute of Science Bangalore 560012 India
| |
Collapse
|
6
|
Abstract
The ability to site-selectively modify equivalent functional groups in a molecule has the potential to streamline syntheses and increase product yields by lowering step counts. Enzymes catalyze site-selective transformations throughout primary and secondary metabolism, but leveraging this capability for non-native substrates and reactions requires a detailed understanding of the potential and limitations of enzyme catalysis and how these bounds can be extended by protein engineering. In this review, we discuss representative examples of site-selective enzyme catalysis involving functional group manipulation and C-H bond functionalization. We include illustrative examples of native catalysis, but our focus is on cases involving non-native substrates and reactions often using engineered enzymes. We then discuss the use of these enzymes for chemoenzymatic transformations and target-oriented synthesis and conclude with a survey of tools and techniques that could expand the scope of non-native site-selective enzyme catalysis.
Collapse
Affiliation(s)
- Dibyendu Mondal
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Harrison M Snodgrass
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Christian A Gomez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
7
|
Stanfield JK, Onoda H, Ariyasu S, Kasai C, Burfoot EM, Sugimoto H, Shoji O. Investigating the applicability of the CYP102A1-decoy-molecule system to other members of the CYP102A subfamily. J Inorg Biochem 2023; 245:112235. [PMID: 37167731 DOI: 10.1016/j.jinorgbio.2023.112235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/09/2023] [Accepted: 04/16/2023] [Indexed: 05/13/2023]
Abstract
Cytochrome P450 enzymes (CYPs) have attracted much promise as biocatalysts in a push for cleaner and more environmentally friendly catalytic systems. However, changing the substrate specificity of CYPs, such as CYP102A1, can be a challenging task, requiring laborious mutagenesis. An alternative approach is the use of decoy molecules that "trick" the enzyme into becoming active by impersonating the native substrate. Whilst the decoy molecule system has been extensively developed for CYP102A1, its general applicability for other CYP102-family enzymes has yet to be shown. Herein, we demonstrate that decoy molecules can "trick" CYP102A5 and A7 into becoming active and hydroxylating non-native substrates. Furthermore, significant differences in decoy molecule selectivity as well as decoy molecule binding were observed. The X-ray crystal structure of the CYP102A5 haem domain was solved at 2.8 Å, delivering insight into a potential substate-binding site that differs significantly from CYP102A1.
Collapse
Affiliation(s)
- Joshua Kyle Stanfield
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Hiroki Onoda
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Shinya Ariyasu
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Chie Kasai
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Eleanor Mary Burfoot
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Hiroshi Sugimoto
- SR Life Science Instrumentation Team, RIKEN SPring-8 Centre, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Osami Shoji
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| |
Collapse
|
8
|
Ji L, Zhang H, Ding W, Song R, Han Y, Yu H, Paneth P. Theoretical Kinetic Isotope Effects in Establishing the Precise Biodegradation Mechanisms of Organic Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4915-4929. [PMID: 36926881 DOI: 10.1021/acs.est.2c04755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Compound-specific isotope analysis (CSIA) for natural isotope ratios has been recognized as a promising tool to elucidate biodegradation pathways of organic pollutants by microbial enzymes by relating reported kinetic isotope effects (KIEs) to apparent KIEs (AKIEs) derived from bulk isotope fractionations (εbulk). However, for many environmental reactions, neither are the reference KIE ranges sufficiently narrow nor are the mechanisms elucidated to the point that rate-determining steps have been identified unequivocally. In this work, besides providing reference KIEs and rationalizing AKIEs, good relationships have been explained by DFT computations for diverse biodegradation pathways with known enzymatic models between the theoretical isotope fractionations (εbulk') from intrinsic KIEs on the rate-determining steps and the observed εbulk. (1) To confirm the mechanistic details of previously reported pathway-dependent CSIA, it includes isotope changes in MTBE biodegradation between hydroxylation by CYP450 and SN2 reaction by cobalamin-dependent methyltransferase, the regioselectivity of toluene biodegradation by CYP450, and the rate-determining step in toluene biodegradation by benzylsuccinate synthase. (2) To yield new fundamental insights into some unclear biodegradation pathways, it consists of the oxidative function of toluene dioxygenase in biodegradation of TCE, the epoxidation mode in biodegradation of TCE by toluene 4-monooxygenase, and the weighted average mechanism in biodegradation of cDCE by CYP450.
Collapse
Affiliation(s)
- Li Ji
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Huanni Zhang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Wen Ding
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Runqian Song
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Ye Han
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Piotr Paneth
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Lodz 90-924, Poland
| |
Collapse
|
9
|
Mai BK, Neris NM, Yang Y, Liu P. C-N Bond Forming Radical Rebound Is the Enantioselectivity-Determining Step in P411-Catalyzed Enantioselective C(sp 3)-H Amination: A Combined Computational and Experimental Investigation. J Am Chem Soc 2022; 144:11215-11225. [PMID: 35583461 DOI: 10.1021/jacs.2c02283] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Engineered metalloenzymes represent promising catalysts for stereoselective C-H functionalization reactions. Recently, P450 enzymes have been evolved to allow for new-to-nature intramolecular C(sp3)-H amination reactions via a nitrene transfer mechanism, giving rise to diamine derivatives with excellent enantiocontrol. To shed light on the origin of enantioselectivity, a combined computational and experimental study was carried out. Hybrid quantum mechanics/molecular mechanics calculations were performed to investigate the activation energies and enantioselectivities of both the hydrogen atom transfer (HAT) and the subsequent C-N bond forming radical rebound steps. Contrary to previously hypothesized enantioinduction mechanisms, our calculations show that the radical rebound step is enantioselectivity-determining, whereas the preceding HAT step is only moderately stereoselective. Furthermore, the selectivity in the initial HAT is ablated by rapid conformational change of the radical intermediate prior to C-N bond formation. This finding is corroborated by our experimental study using a set of enantiomerically pure, monodeuterated substrates. Furthermore, classical and ab initio molecular dynamics simulations were carried out to investigate the conformational flexibility of the carbon-centered radical intermediate. This key radical species undergoes a facile conformational change in the enzyme active site from the pro-(R) to the pro-(S) configuration, whereas the radical rebound is slower due to the spin-state change and ring strain of the cyclization process, thereby allowing stereoablative C-N bond formation. Together, these studies revealed an underappreciated enantioinduction mechanism in biocatalytic C(sp3)-H functionalizations involving radical intermediates, opening up new avenues for the development of other challenging asymmetric C(sp3)-H functionalizations.
Collapse
Affiliation(s)
- Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Natalia M Neris
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Yang Yang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
- Biomolecular Science and Engineering (BMSE) Program, University of California, Santa Barbara, California 93106, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
10
|
Zhang H, Song R, Guo F, Chai L, Wang W, Zeng J, Yu H, Ji L. Using Physical Organic Chemistry Knowledge to Predict Unusual Metabolites of Synthetic Phenolic Antioxidants by Cytochrome P450. Chem Res Toxicol 2022; 35:840-848. [PMID: 35416036 DOI: 10.1021/acs.chemrestox.2c00021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biotransformation, especially by human CYP450 enzymes, plays a crucial role in regulating the toxicity of organic compounds in organisms, but is poorly understood for most emerging pollutants, as their numerous "unusual" biotransformation reactions cannot retrieve examples from the textbooks. Therefore, in order to predict the unknown metabolites with altering toxicological profiles, there is a realistic need to develop efficient methods to reveal the "unusual" metabolic mechanism of emerging pollutants. Combining experimental work with computational predictions has been widely accepted as an effective approach in studying complex metabolic reactions; however, the full quantum chemical computations may not be easily accessible for most environmentalists. Alternatively, this work practiced using the concepts from physical organic chemistry for studying the interrelationships between structure and reactivity of organic molecules, to reveal the "unusual" metabolic mechanism of synthetic phenolic antioxidants catalyzed by CYP450, for which the simple pencil-and-paper and property-computation methods based on physical organic chemistry were performed. The phenol-coupling product of butylated hydroxyanisole (BHA) (based on spin aromatic delocalization) and ipso-addition quinol metabolite of butylated hydroxytoluene (BHT) (based on hyperconjugative effect) were predicted as two "unusual" metabolites, which were further confirmed by our in vitro analysis. We hope this easily handled approach will promote environmentalists to attach importance to physical organic chemistry, with an eye to being able to use the knowledge gained to efficiently predict the fates of substantial unknown synthesized organic compounds in the future.
Collapse
Affiliation(s)
- Huanni Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China.,School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Runqian Song
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China.,School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Fangjie Guo
- School of Management Engineering and Electronic Commerce, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Lihong Chai
- Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 81377 Munich, Germany
| | - Wuwei Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Jingyi Zeng
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Li Ji
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| |
Collapse
|
11
|
Salihu M, Batiha GES, Kasozi KI, Zouganelis GD, Sharkawi SM, Ahmed EI, Usman IM, Nalugo H, Ochieng JJ, Ssengendo I, Okeniran OS, Pius T, Kimanje KR, Kegoye ES, Kenganzi R, Ssempijja F. Crinum jagus (J. Thomps. Dandy): Antioxidant and protective properties as a medicinal plant on toluene-induced oxidative stress damages in liver and kidney of rats. Toxicol Rep 2022; 9:699-712. [PMID: 35433275 PMCID: PMC9011043 DOI: 10.1016/j.toxrep.2022.03.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/22/2022] [Accepted: 03/25/2022] [Indexed: 12/18/2022] Open
Abstract
Crinum jagus (C. jagus; J. Thomps.) Dandy (Liliaceae) is a pantropical plant known for its medicinal values and pharmacological properties. The study assessed the protective effects and changes in oxidative stress indices due to C. jagus leaf extracts on the toluene-induced liver and kidney injuries in rats. The study was conducted on 8-week-old male Wistar rats (n = 80), weighing 243.3 ± 1.42 g. Group I, 1 ml/kg distilled water for 7 days; Group II, 4.5 ml/kg toluene once, 1 ml/kg distilled water for 7 days; Group III, 4.5 ml/kg toluene once, 500 mg/kg methanolic extract for 7 days; Group IV, 4.5 ml/kg toluene once, 500 mg/kg aqueous extract for 7 days; Group V, 500 mg/kg methanolic extract for 7 days; Group VI, 500 mg/kg aqueous extract for 7 days; Group VII, 500 mg/kg of vitamin C for 7 days; Group, VIII, 4.5 ml/kg toluene once, 500 mg/kg vitamin C for 7 days, all administrations were given by oral gavage. The phytochemical contents, absolute and relative organ weights of liver and kidneys, liver and kidney function tests, antioxidant status, as well as histological tests were analyzed using standard protocols. The tannins, flavonoids, and polyphenols were in highest concentration in both extracts, content in methanol extract (57.04 ± 1.51 mgg-1, 35.43 ± 1.03 mgg-1, 28.2 ± 0.34 mgg-1 respectively) > aqueous extract (18.74 ± 1.01 mgg-1, 13.43 ± 0.47 mgg-1, 19.65 ± 0.21 mgg-1 respectively). In the negative control group (II), bodyweights significantly (P < 0.05) reduced by 22%, liver weight and kidney weight significantly (P < 0.05) increased by 42% and 83% respectively, liver-to-bodyweight and kidney-to-bodyweight ratios increased significantly (P < 0.05); serum liver function tests (LFTs) i.e., bilirubin, alkaline phosphatase (ALP), Alanine aminotransferase (ALT), Aspartate aminotransferase (AST), Gamma-glutamyl transferase (GGT), and serum kidney function tests (creatinine and urea) were significantly (P < 0.05) elevated; oxidant status (tissue malondialdehyde; MDA) was significantly (P < 0.05) elevated, antioxidant status i.e., tissue superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) levels was significantly (P < 0.05) reduced; with markedly visible renal and hepatic histopathological findings, compared to the normal control group. In C. jagus extract test groups (III and IV), the parameters were significantly (P < 0.05) alleviated and reversed to normal/near normal compared to the negative control. The LFTs, kidney function tests, and antioxidant status were significantly (P < 0.05) more improved with the methanol extract test and standard control groups compared to the aqueous extract test group; Also, the methanol extract test group showed better histological features than the aqueous extract test and standard control groups. The methanolic extract shows better antioxidant potential due to the availability of more nonenzymatic antioxidants (tannins, flavonoids, and polyphenols). The findings showed that toluene is a very aggressive xenobiotic due to the promotion of oxidative stress and peroxidation of cellular lipids, but C. jagus leaves provide significant protection through the reducing power of nonenzymatic antioxidants and their ability to induce endogenous antioxidant enzymes (SOD, CAT, and glutathione reductase or GR) causing reduced cellular lipid peroxidation and tissue damages, quickened tissue repair, and improved cell biology of liver and kidneys during toluene toxicity. The methanol leaf extract provides better protection and should be advanced for more experimental and clinical studies to confirm its efficacy in alleviating oxidative stress tissue injuries, specifically due to toluene.
Collapse
Key Words
- ALP, Alkaline phosphatase
- ALT, Alanine aminotransferase
- AST, Aspartate Aminotransferase
- Anti-lipid peroxidation
- Antioxidants
- Catalase Crinum jagus
- GGT, Gamma-glutamyl transferase
- GR, glutathione reductase
- GSH, Glutathione
- Glutathione superoxide dismutase
- Histoprotective
- LFTs, Liver function tests
- MDA, malondialdehyde
- Malondialdehyde
- SOD, Superoxide dismutase
- TOL, Toluene
- Toluene toxicity
- VC, Vitamin C
Collapse
Affiliation(s)
- Mariama Salihu
- Department of Biochemistry, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | | | - George D. Zouganelis
- Human Science Research Centre, University of Derby, Kedleston Road, DE22 1GB, Derby, United Kingdom
| | - Souty M.Z. Sharkawi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Eman Ibrahim Ahmed
- Pharmacology and Therapeutics Department, College of Medicine, Jouf University, Sakaka 72346, Saudi Arabia
- Pharmacology Department, Faculty of Medicine, Fayoum University, Fayoum 63511, Egypt
| | - Ibe Michael Usman
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Halima Nalugo
- Department of Anatomy, Faculty of Medicine, Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda
| | - Juma J. Ochieng
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Ibrahim Ssengendo
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Olatayo Segun Okeniran
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Theophilus Pius
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, Kampala International University Teaching Hospital, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Kyobe Ronald Kimanje
- Department of Biochemistry, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Eric Simidi Kegoye
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Ritah Kenganzi
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, Kampala International University Teaching Hospital, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Fred Ssempijja
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| |
Collapse
|
12
|
Chen CC, Dai M, Zhang L, Zhao J, Zeng W, Shi M, Huang JW, Liu W, Guo RT, Li A. Molecular Basis for a Toluene Monooxygenase to Govern Substrate Selectivity. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Meng Dai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Lilan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jing Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wei Zeng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Min Shi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jian-Wen Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Weidong Liu
- Industrial Enzymes National Engineering Laboratory, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin 300308, China
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
13
|
Coleman T, Kirk AM, Lee JHZ, Doherty DZ, Bruning JB, Krenske EH, De Voss JJ, Bell SG. Different Geometric Requirements for Cytochrome P450-Catalyzed Aliphatic Versus Aromatic Hydroxylation Results in Chemoselective Oxidation. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tom Coleman
- Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Alicia M. Kirk
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Joel H. Z. Lee
- Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Daniel Z. Doherty
- Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - John B. Bruning
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Elizabeth H. Krenske
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - James J. De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Stephen G. Bell
- Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|