1
|
Shirvandi Z, Ghorashi N, Rostami A. Copper catalyzed carbon-selenium bond formation via the coupling reaction of aryl halides, phenylboronic acid and Se. Sci Rep 2025; 15:13114. [PMID: 40240807 PMCID: PMC12003743 DOI: 10.1038/s41598-025-96747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
This is the first report for C-Se bond formation involving the reaction of aryl halides with arylboronic acid and selenium powder to synthesis of unsymmetrical diaryl selenides in the presence of CuI as a homogeneous catalyst. A wide range of aryl halides react with various substituted groups under optimal conditions to provide the desired unsymmetrical diaryl selenides with good to high yields. Also, the same reactions were investigated in the presence of M-MCF@Gua-Cu as a reusable magnetic nanocatalyst under optimal conditions. The M-MCF@Gua-Cu catalyst allows for simpler (easy work-up) and greener methodology. In addition, the advantages of the presented method include the use of arylboronic acid/Se as a safe and cost-effective arylselenating system, the simplicity of operation, and green and cheap solvent.
Collapse
Affiliation(s)
- Zeinab Shirvandi
- Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, 66177-15175, Iran.
| | - Nadya Ghorashi
- Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, 66177-15175, Iran
| | - Amin Rostami
- Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, 66177-15175, Iran.
| |
Collapse
|
2
|
do Carmo Pinheiro R, Souza Marques L, Ten Kathen Jung J, Nogueira CW, Zeni G. Recent Progress in Synthetic and Biological Application of Diorganyl Diselenides. CHEM REC 2024; 24:e202400044. [PMID: 38976862 DOI: 10.1002/tcr.202400044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/08/2024] [Indexed: 07/10/2024]
Abstract
Diorganyl diselenides have emerged as privileged structures because they are easy to prepare, have distinct reactivity, and have broad biological activity. They have also been used in the synthesis of natural products as an electrophile in the organoselenylation of aromatic systems and peptides, reductions of alkenes, and nucleophilic substitution. This review summarizes the advancements in methods for the transformations promoted by diorganyl diselenides in the main functions of organic chemistry. Parallel, it will also describe the main findings on pharmacology and toxicology of diorganyl diselenides, emphasizing anti-inflammatory, hypoglycemic, chemotherapeutic, and antimicrobial activities. Therefore, an examination detailing the reactivity and biological characteristics of diorganyl diselenides provides valuable insights for academic researchers and industrial professionals.
Collapse
Affiliation(s)
- Roberto do Carmo Pinheiro
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Luiza Souza Marques
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Juliano Ten Kathen Jung
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Gilson Zeni
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| |
Collapse
|
3
|
Duan Y, Guo Z, Zheng T, Lu Y, Xu J, Liu J, Yang F. Iodine-Promoted Reductive Sulfenylation Using Ketones as Hydride Donors. J Org Chem 2024; 89:5851-5856. [PMID: 38587835 DOI: 10.1021/acs.joc.3c02904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Herein, an iodine-promoted reductive sulfenylation reaction of ketones with disulfides has been developed. This method provides an approach for synthesizing unsymmetrical alkyl-alkyl and alkyl-aryl sulfides in a single step. Investigation of the reaction mechanism revealed that ketones play a dual role in this process. They react with disulfides to produce vinyl thioethers and act as effective organic hydride donors, reducing the number of vinyl thioethers that are formed in situ. This study expands the range of applications of ketones in chemical synthesis.
Collapse
Affiliation(s)
- Yiping Duan
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhichao Guo
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Tiandong Zheng
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yang Lu
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jie Liu
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Fulai Yang
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
4
|
Cui W, Guo G, Wang Y, Song X, Lv J, Yang D. Visible light/copper catalysis enabled alkylation of silyl enol ethers with arylsulfonium salts. Chem Commun (Camb) 2023; 59:6367-6370. [PMID: 37144332 DOI: 10.1039/d3cc01056b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
An efficient protocol has been developed herein for the site-selective alkylation of silyl enol ethers with arylsulfonium salts giving access to valuable aryl alkyl thioethers under visible light conditions. Enabled by copper (I) photocatalysis, the C-S bond of arylsulfonium salts can be selectively cleaved to deliver C-centered radicals under mild conditions. This developed method provides a straightforward approach to utilize arylsulfonium salts as sulfur sources for the synthesis of aryl alkyl thioethers.
Collapse
Affiliation(s)
- Wenwen Cui
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Guoju Guo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Yifei Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Xiuyan Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Jian Lv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Daoshan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
Abstract
Organic peroxides are becoming popular intermediates for novel chemical transformations. The weak O-O bond is readily reduced by transition metals, including iron and copper, to initiate a radical cascade process that breaks C-C bonds. Great potential exists for the rapid generation of complexity, originating from the ability to couple the resulting free radicals with a wide range of partners. First, this review article discusses the history and synthesis of organic peroxides, providing the context necessary to understand this methodology. Then, it highlights 91 examples of recent applications of the radical functionalization of C-C bonds accessed through the transition metal-mediated reduction of organic peroxides. Finally, we provide some comments about safety when working with organic peroxides.
Collapse
Affiliation(s)
- Jeremy H. Dworkin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| | - Brady W. Dehnert
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| | - Ohyun Kwon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| |
Collapse
|
6
|
Ying Y, Ye Z, Wang A, Chen X, Meng S, Xu P, Gao Y, Zhao Y. Nickel-Catalyzed Radical Ring-Opening Phosphorylation of Cycloalkyl Hydroperoxides Leading to Distal Acylphosphine Oxides. Org Lett 2023; 25:928-932. [PMID: 36729387 DOI: 10.1021/acs.orglett.2c04233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A facile and efficient nickel-catalyzed C-C bond cleavage/phosphorylation of various cycloalkyl hydroperoxides was developed. This radical ring-opening strategy provided practical access to structurally diverse distal ketophosphine oxides in one pot through concurrent C═O/C-P bond formation with high atom economy under mild room temperature and base-free conditions.
Collapse
Affiliation(s)
- Yue Ying
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Ziyi Ye
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - An Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Xingjie Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Shanshan Meng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China
| | - Pengxiang Xu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Yuxing Gao
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Yufen Zhao
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
7
|
Beletskaya IP, Ananikov VP. Transition-Metal-Catalyzed C–S, C–Se, and C–Te Bond Formations via Cross-Coupling and Atom-Economic Addition Reactions. Achievements and Challenges. Chem Rev 2022; 122:16110-16293. [DOI: 10.1021/acs.chemrev.1c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Irina P. Beletskaya
- Chemistry Department, Lomonosov Moscow State University, Vorob’evy gory, Moscow 119899, Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| |
Collapse
|
8
|
Zhang L, He J, Zhang P, Zhu D, Zheng K, Shen C. Visible-light-induced C–H sulfenylation of quinoxalin-2(1H)-ones with disulfides by sustainable cerium catalysis. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
9
|
Wang M, Tao J, Yang F, Xin H, Gao S, Guo L, Gao P. Iron‐Catalyzed Ring‐Opening/Allylation of Cycloalkyl Hydroperoxides with Allylic Sulfones. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ming‐Hua Wang
- Department of Chemistry School of Chemistry Xi'an Key Laboratory of Sustainable Energy Material Chemistry MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter Xi'an Jiaotong University No.28, Xianning West Road Xi'an 710049 P. R. China
| | - Jing‐Qi Tao
- Department of Chemistry School of Chemistry Xi'an Key Laboratory of Sustainable Energy Material Chemistry MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter Xi'an Jiaotong University No.28, Xianning West Road Xi'an 710049 P. R. China
| | - Fan Yang
- Department of Chemistry School of Chemistry Xi'an Key Laboratory of Sustainable Energy Material Chemistry MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter Xi'an Jiaotong University No.28, Xianning West Road Xi'an 710049 P. R. China
| | - Hong Xin
- Department of Chemistry School of Chemistry Xi'an Key Laboratory of Sustainable Energy Material Chemistry MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter Xi'an Jiaotong University No.28, Xianning West Road Xi'an 710049 P. R. China
| | - Shu‐Xin Gao
- Department of Chemistry School of Chemistry Xi'an Key Laboratory of Sustainable Energy Material Chemistry MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter Xi'an Jiaotong University No.28, Xianning West Road Xi'an 710049 P. R. China
| | - Li‐Na Guo
- Department of Chemistry School of Chemistry Xi'an Key Laboratory of Sustainable Energy Material Chemistry MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter Xi'an Jiaotong University No.28, Xianning West Road Xi'an 710049 P. R. China
| | - Pin Gao
- Department of Chemistry School of Chemistry Xi'an Key Laboratory of Sustainable Energy Material Chemistry MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter Xi'an Jiaotong University No.28, Xianning West Road Xi'an 710049 P. R. China
| |
Collapse
|
10
|
Rampon D, Seckler D, da Luz EQ, Paixão DB, Larroza AME, Schneider PH, Alves D. Transition metal catalysed direct sulfanylation of unreactive C-H bonds: an overview of the last two decades. Org Biomol Chem 2022; 20:6072-6177. [DOI: 10.1039/d2ob00986b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal catalysed direct sulfanylations of unreactive C-H bonds have become a unique and straightforward synthetic strategy in late-stage C-S bond formation of relevant complex molecules. Such transformations have represented...
Collapse
|
11
|
Nakajima T, Takano K, Maeda H, Ogiwara Y, Sakai N. Production of Alkyl Aryl Sulfides from Aromatic Disulfides and Alkyl Carboxylates via a Disilathiane-Disulfide Interchange Reaction. Chem Asian J 2021; 16:4103-4107. [PMID: 34693645 DOI: 10.1002/asia.202101101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/17/2021] [Indexed: 11/11/2022]
Abstract
The results of this study show that disilathiane is an effective mediator in the synthesis of alkyl aryl sulfides with disulfides and alkyl carboxylates. Mechanistic studies suggest that disilathiane promotes cleavage of the sulfur-sulfur bond of disulfides to generate thiosilane as a key intermediate. Diselenides were also applicable to this transformation to produce the corresponding selenides.
Collapse
Affiliation(s)
- Takumi Nakajima
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda, Chiba, 278-8510, Japan
| | - Ken Takano
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda, Chiba, 278-8510, Japan
| | - Hiromu Maeda
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda, Chiba, 278-8510, Japan
| | - Yohei Ogiwara
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda, Chiba, 278-8510, Japan
| | - Norio Sakai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda, Chiba, 278-8510, Japan
| |
Collapse
|