1
|
Banerjee M, Chatterjee A, Aneja S, Chatterjee A. Mechanochemical Functionalization of Heterocycles by C-H Activation: An Update. J Org Chem 2025; 90:5323-5335. [PMID: 40162735 DOI: 10.1021/acs.joc.4c03135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The mechanochemical C-H activation of heterocycles presents a sustainable, solvent-free alternative to the traditional solution-phase synthesis. Heterocycles are fundamental molecular scaffolds in medicinal chemistry and drug discovery. This review highlights recent advances in mechanochemical methods for metal-catalyzed and metal-free C-H functionalization/derivatization, including arylation, alkenylation, acylation, borylation, trifluoromethylation, etc., applied across various heterocyclic compounds. Emphasizing green aspects, this synopsis provides a comprehensive overview of mechanochemical innovations, their unique features and advantages, transformative potential for ecofriendly synthesis, and future prospects of sustainability.
Collapse
Affiliation(s)
- Mainak Banerjee
- Department of Chemistry, Birla Institute of Technology and Science Pilani, KK Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa, 403726, India
| | - Abboy Chatterjee
- Department of Chemistry, Birla Institute of Technology and Science Pilani, KK Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa, 403726, India
| | - Shaurya Aneja
- Department of Chemistry, Birla Institute of Technology and Science Pilani, KK Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa, 403726, India
| | - Amrita Chatterjee
- Department of Chemistry, Birla Institute of Technology and Science Pilani, KK Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa, 403726, India
| |
Collapse
|
2
|
Cyniak J, Kasprzak A. Mechanochemical Synthesis of Molecular Chemoreceptors. ACS OMEGA 2024; 9:48870-48883. [PMID: 39713627 PMCID: PMC11656220 DOI: 10.1021/acsomega.4c06566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024]
Abstract
The design of environmentally friendly methods for synthesizing molecular receptors is an expanding area within applied organic chemistry. This work systematically summarizes advances in the mechanochemical synthesis of molecular chemoreceptors. It discusses key achievements related to the synthesis of chemoreceptors containing azine, Schiff base, thiosemicarbazone, hydrazone, rhodamine 6G, imide, or amide moieties. Additionally, it highlights the application potential of mechanochemically synthesized molecular chemoreceptors in the recognition of ions and small molecules, along with a discussion of the mechanisms of detection processes.
Collapse
Affiliation(s)
- Jakub
S. Cyniak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland
| | - Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland
| |
Collapse
|
3
|
Bhosle AA, Banerjee M, Thakuri A, Vishwakarma PD, Chatterjee A. An ESIPT-active orange-emissive 2-(2'-hydroxyphenyl)imidazo[1,2- a]pyridine-derived chemodosimeter for turn-on detection of fluoride ions via desilylation. RSC Adv 2024; 14:33312-33322. [PMID: 39434992 PMCID: PMC11492827 DOI: 10.1039/d4ra05823b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024] Open
Abstract
Fluoride is an essential element for oral health with an optimum concentration of 0.7-1.2 ppm in drinking water, but it is detrimental at higher concentrations, causing fluorosis, acute gastric ulcer, urolithiasis, and kidney infection, which adds immense significance to its detection in water sources. In the current study, a new chemodosimeter (HIPS-Br) is designed by protecting a 2-(2'-hydroxyphenyl)imidazo[1,2-a]pyridine derivative (HIP-Br) with a fluoride recognizable tert-butyldiphenylsilane moiety and utilized for the selective detection of F- ions by an excited-state intramolecular proton transfer (ESIPT)-based fluorimetric response. The probe HIPS-Br exhibits blue fluorescence in solution, and upon the incremental addition of F- ions, it exhibits a turn-on response, exhibiting a strong orange emission at 598 nm by spontaneous cleavage of the tert-butyldiphenylsilane group to release fluorescent HIP-Br in the working solution. HIPS-Br displayed no or insignificant response towards numerous common anions, cations and small molecules, affirming its selectivity to F- ions and offered a low limit of detection (LOD) of 1.2 ppb (6.6 × 10-8 M). The real sample analysis by spiking fluorides in water and toothpaste samples showed excellent percent recoveries. The chemodosimeter was successfully utilized in the solid-phase detection of F- ions on silica-coated TLC plates and analyzed by ImageJ analysis, marking its utility in on-site quantitation purposes.
Collapse
Affiliation(s)
- Akhil A Bhosle
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, KK Birla Goa Campus Goa 403726 India +91-832-255-7031 +91-832-2580-347 +91-832-2580-320
| | - Mainak Banerjee
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, KK Birla Goa Campus Goa 403726 India +91-832-255-7031 +91-832-2580-347 +91-832-2580-320
| | - Ankit Thakuri
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, KK Birla Goa Campus Goa 403726 India +91-832-255-7031 +91-832-2580-347 +91-832-2580-320
| | - Pooja D Vishwakarma
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, KK Birla Goa Campus Goa 403726 India +91-832-255-7031 +91-832-2580-347 +91-832-2580-320
| | - Amrita Chatterjee
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, KK Birla Goa Campus Goa 403726 India +91-832-255-7031 +91-832-2580-347 +91-832-2580-320
| |
Collapse
|
4
|
Cyniak JS, Kasprzak A. Grind, shine and detect: mechanochemical synthesis of AIE-active polyaromatic amide and its application as molecular receptor of monovalent anions or nucleotides. RSC Adv 2024; 14:13227-13236. [PMID: 38655472 PMCID: PMC11037028 DOI: 10.1039/d4ra02129k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
A mechanochemical synthesis of novel polyaromatic amide consisting of 1,3,5-triphenylbenzene and 1,1',2,2'-tetraphenylethylene skeletons has been established. The designed mechanochemical approach using readily available and low-cost equipment allowed a twofold increase in reaction yield, a 350-fold reduction in reaction time and a significant reduction in the use of harmful reactants in comparison to the solution synthesis method. The parameters of Green Chemistry were used to highlight the advantages of the developed synthesis method over the solution-based approach. The title compound was found to exhibit attractive optical properties related to the Aggregation-induced emission (AIE) behaviour. Taking the advantage of AIE-active properties of the synthesized polyaromatic amide, its application as effective and versatile molecular receptor towards detection of monovalent anions, as well as bio-relevant anions - nucleotides, has been demonstrated. The values of the binding constants were at the satisfactory level of 104, the detection limit values were low and ranged from 0.2 μM to 19.9 μM.
Collapse
Affiliation(s)
- Jakub S Cyniak
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego Str. 3 00-664 Warsaw Poland
| | - Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego Str. 3 00-664 Warsaw Poland
| |
Collapse
|
5
|
Hu X, Liu J, Gong X, Xu J, Yao J, Li K, Liu H. Photochromic biomaterials: Synthesis and fluorescence properties of spiroxanthenes-grafted alginate derivatives. Carbohydr Polym 2024; 327:121664. [PMID: 38171681 DOI: 10.1016/j.carbpol.2023.121664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/15/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024]
Abstract
Herein, we reported a general and green synthetic strategy for photochromic functional alginate derivatives grafting with isoindolinone spiroxanthenes. Under mild condition, diverse 2-aminoalkyl isoindolinone spiroxanthene derivatives have been prepared from organic photochromic isobenzofuranone spiroxanthenes (including rhodamine B, rhodamine 6G and fluorescein), and grafted on alginate chains through amidation reaction using diamine as a linkage with water as a green solvent at room temperature. The photochromic properties of the fluorophores-modified polymers and the effect of pH value have been explored. Under acid conditions, the spiroisoindolinone rings of alginate derivatives are opened resulting in showing absorption bands and fluorescence with orange to green emission, while the alginate derivatives turned to colourless under basic conditions which is reversibly. In addition to biodegradability and biocompatibility, the polymers exhibit good film-forming properties simultaneously. The films and fibers produced from the alginate derivatives also project good fluorescence properties.
Collapse
Affiliation(s)
- Xiaoxia Hu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, Shandong Province, China.
| | - Xiaole Gong
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Jiangtao Xu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Jiuyong Yao
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Kai Li
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Honglei Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, Shandong Province, China.
| |
Collapse
|
6
|
Wada Y, Tsuchihashi K, Kanzaki M, Hamura T. Solid-State Generation of Diarylisonaphthofuran and Its Mechanochemical Diels-Alder Reaction with Epoxynaphthalene. Chemistry 2023:e202302660. [PMID: 37779416 DOI: 10.1002/chem.202302660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
A solid-state method was developed for generating diarylisonaphthofurans from 1,3-diaryl-1,3-dihydronaphthofuranols. The generated reactive molecules were stable in the solid state and could be stored without any extra precautions. X-ray diffraction analysis revealed a typical quinoidal structure. Furthermore, the mechanochemical Diels-Alder reaction of 1,3-diarylisonaphthofurans with epoxynaphthalenes afforded synthetically attractive diepoxypentacenes.
Collapse
Affiliation(s)
- Yoshifumi Wada
- Department of Applied Chemistry for Environment, Kwansei Gakuin University, 1 Gakuenuegahara, Sanda, Hyogo, 669-1330, Japan
| | - Keidai Tsuchihashi
- Department of Applied Chemistry for Environment, Kwansei Gakuin University, 1 Gakuenuegahara, Sanda, Hyogo, 669-1330, Japan
| | - Masayoshi Kanzaki
- Department of Applied Chemistry for Environment, Kwansei Gakuin University, 1 Gakuenuegahara, Sanda, Hyogo, 669-1330, Japan
| | - Toshiyuki Hamura
- Department of Applied Chemistry for Environment, Kwansei Gakuin University, 1 Gakuenuegahara, Sanda, Hyogo, 669-1330, Japan
| |
Collapse
|
7
|
Saha S, Bhosle AA, Chatterjee A, Banerjee M. Mechanochemical Duff Reaction in Solid Phase for Easy Access to Mono- and Di-formyl Electron-Rich Arenes. J Org Chem 2023; 88:10002-10013. [PMID: 37418632 DOI: 10.1021/acs.joc.3c00789] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
A sustainable alternative to the century-old Duff reaction was developed by adopting a solid-phase mechanochemical route. A series of mono-formyl electron-rich arenes were prepared in high yields in silica as the solid reaction media using a combination of hexamethylenetetramine (HMTA) as the formyl source and a small amount of H2SO4 in a mixer mill. The use of toxic, costly, and low-boiling trifluoroacetic acid was avoided in the new mold of the mechanochemical Duff reaction. The mono-formyl phenols were obtained with exclusive ortho-selectivity, whereas unprecedented para-formylation was observed for other electron-rich aromatics. By controlling the stoichiometry of HMTA, the method offers easy access to di-formylated phenols as well. The scalability of the reaction was validated with selected substrates at the gram-scale level. In a case study, a mechanochemical tandem reaction was explored in the synthesis of a rhodol derivative. The solvent-free, metal-free mild method of formylation, with the absence of tedious work-up steps and shorter reaction times using an inexpensive mineral acid, is a sustainable alternative to the available methods for aromatic formylation.
Collapse
Affiliation(s)
- Soumik Saha
- Department of Chemistry, BITS Pilani, K K Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India
| | - Akhil A Bhosle
- Department of Chemistry, BITS Pilani, K K Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India
| | - Amrita Chatterjee
- Department of Chemistry, BITS Pilani, K K Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India
| | - Mainak Banerjee
- Department of Chemistry, BITS Pilani, K K Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India
| |
Collapse
|
8
|
Salami SA, Safari JB, Smith VJ, Krause RWM. Mechanochemically-Assisted Passerini Reactions: A Practical and Convenient Method for the Synthesis of Novel α-Acyloxycarboxamide Derivatives. ChemistryOpen 2023; 12:e202200268. [PMID: 37198143 PMCID: PMC10191865 DOI: 10.1002/open.202200268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/04/2023] [Indexed: 05/19/2023] Open
Abstract
A carboxylic acid, an aldehyde, and an isonitrile were combined in a single step (Passerini reaction) under mechanochemical activation to produce several α-acyloxycarboxamide derivatives in high to excellent yields within 15 min of milling. Mechanochemistry, when combined with the diversity provided by multicomponent reactions, enables the efficient synthesis of the target compounds, with great atom economy, shorter reaction times, and experimental simplicity. The method allows for the rapid production of a vast library of complex compounds from a limited number of substrates.
Collapse
Affiliation(s)
- Sodeeq Aderotimi Salami
- Center for Chemico- and Biomedicinal Research (CCBR) Rhodes UniversityGrahamstown, Makhanda6139South Africa
| | - Justin Bazibuhe Safari
- Center for Chemico- and Biomedicinal Research (CCBR) Rhodes UniversityGrahamstown, Makhanda6139South Africa
| | - Vincent J. Smith
- Center for Chemico- and Biomedicinal Research (CCBR) Rhodes UniversityGrahamstown, Makhanda6139South Africa
| | - Rui W. M. Krause
- Center for Chemico- and Biomedicinal Research (CCBR) Rhodes UniversityGrahamstown, Makhanda6139South Africa
| |
Collapse
|
9
|
Rather IA, Ali R. A Facile Deep Eutectic Solvent (DES) Mediated Green Approach for the Synthesis of Fluorescein and Phenolphthalein Dyes. ChemistrySelect 2023. [DOI: 10.1002/slct.202300749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
10
|
Hernández-Pacheco P, Zelada-Guillén GA, Romero-Ávila M, Cañas-Alonso RC, Flores-Álamo M, Escárcega-Bobadilla MV. Enhanced Host-Guest Association and Fluorescence in Copolymers from Copper Salphen Complexes by Supramolecular Internalization of Anions. Chempluschem 2023; 88:e202200310. [PMID: 36175158 DOI: 10.1002/cplu.202200310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/13/2022] [Indexed: 11/10/2022]
Abstract
We describe the synthesis, crystallographic characterization of a new Cu-Salphen compound and its use as a host Lewis-acid against guest anions in two versions: a) free molecule, b) copolymerized with methyl methacrylate:n-butyl acrylate (1 : 4-wt.) as protective co-monomers. Higher contents in Cu-Salphen yielded larger and more homogeneous polymer sizes. Polymer size together with glass transitions, heat capacity, thermal degradation, guest-saturation degrees and host-guest species distribution profiles from spectrophotometric titrations explained growths of up to 630-fold in K11 and 180000-fold in K12 for the host's binding site attributable to a solvophobic protection from the macromolecular structure. Spectrofluorimetry revealed blue-shifted×13-16 larger luminescence for Cu-Salphen in the polymers (λem =488-498 nm) than that of the non-polymerized counterpart (λem =510-543 nm) and "turn-on" blue-shifted enhanced fluorescence upon guest association. We propose a cooperative incorporation of the guests occurring from the outer medium toward internally protected binding site pockets in the random coil polymer conformations.
Collapse
Affiliation(s)
- Paulina Hernández-Pacheco
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Gustavo A Zelada-Guillén
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Margarita Romero-Ávila
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Roberto Carlos Cañas-Alonso
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Marcos Flores-Álamo
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Martha V Escárcega-Bobadilla
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, Mexico City, 04510, Mexico
| |
Collapse
|
11
|
Salami SA, Smith VJ, Krause RWM. Water‐Assisted Passerini Reactions under Mechanochemical Activation: A Simple and Straightforward Access to Oxindole Derivatives. ChemistrySelect 2023. [DOI: 10.1002/slct.202204325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | - Vincent J. Smith
- Department of Chemistry Rhodes University Grahamstown, Makhanda 6139 South Africa
| | - Rui W. M. Krause
- Department of Chemistry Rhodes University Grahamstown, Makhanda 6139 South Africa
| |
Collapse
|
12
|
Yu C, He JH, Lu JM. Ion-in-Conjugation: A Promising Concept for Multifunctional Organic Semiconductors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204023. [PMID: 36285771 DOI: 10.1002/smll.202204023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Most organic semiconductors (OSCs) consist of conjugated skeletons with flexible peripheral chains. Their weak intermolecular interactions from dispersion and induction forces result in environmental susceptibilities and are unsuitable for many multifunctional applications where direct exposure to external environments is unavoidable, such as gas absorption, chemical sensing, and catalysis. To exploit the advantages of inorganic semiconductors in OSCs, ion-in-conjugation (IIC) materials are proposed. An IIC material refers to any conjugated material (molecules, polymers, and crystals) in Kekule's structural formula containing stoichiometric ionic states in its conjugated backbone in the electronic ground state. In this review, the definitions, structures, synthesis, properties, and applications of IIC materials are described briefly. Four types of IIC material, including zwitterionic conjugated molecules/polymers, conjugated ionic dyes, π-d conjugated molecules and polymers, and coordinatively doped polymers, are reported. Their applications in gas sensing, humidity sensing, resistive memory devices, and thermal/photo-/electro-catalysis are demonstrated. The challenges and opportunities for future research are also discussed. It is expected that this work will inspire the design of new organic electronic information materials.
Collapse
Affiliation(s)
- Chuang Yu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jing-Hui He
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| | - Jian-Mei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
13
|
Li Z, Zhou Q, Li S, Liu M, Li Y, Chen C. Carbon dots fabricated by solid-phase carbonization using p-toluidine and l-cysteine for sensitive detection of copper. CHEMOSPHERE 2022; 308:136298. [PMID: 36064008 DOI: 10.1016/j.chemosphere.2022.136298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/14/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
In this study, a label-free "turn off" fluorescent sensor has been resoundingly fabricated using carbon dots (CDs) for ultrasensitive detection of copper ions (Cu2+). CDs are prepared by solid phase carbonization method using p-toluidine and l-cysteine as the precursors. The synthesized CDs exhibited the highest fluorescence intensity with excitation and emission wavelengths set at 300 nm and 400 nm, respectively. The CDs were selective and sensitive to Cu2+ due to the static quenching mechanism. The concentration of CDs, and solution pH and incubation time were important parameters for the developed sensor. The experimental results showed that 20 mgL-1 was enough for the analysis. As the solution pH was concerned, it was apparent that the sensor was endowed with an excellent response signal to Cu2+ and provided high sensitivity at pH 12. The interaction occurred very quickly, and the incubation time could be set at 1 min. The sensor provided a two-stage calibration curve to Cu2+ in the range of 0.05-0.7 and 0.7-4 μM with a limit of detection of 47 nM. The obtained results clearly demonstrated that this facile method was fast, reliable and selective for detecting Cu2+, which would explore a prospective strategy for developing effective and low-cost sensors for monitoring metal ions in aqueous environments.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Qingxiang Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Shuangying Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Menghua Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yanhui Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China.
| |
Collapse
|
14
|
Bhosle AA, Banerjee M, Hiremath SD, Sisodiya DS, Naik VG, Barooah N, Bhasikuttan AC, Chattopadhyay A, Chatterjee A. A combination of a graphene quantum dots-cationic red dye donor-acceptor pair and cucurbit[7]uril as a supramolecular sensor for ultrasensitive detection of cancer biomarkers spermine and spermidine. J Mater Chem B 2022; 10:8258-8273. [PMID: 36134699 DOI: 10.1039/d2tb01269c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In a unique approach, the combination of a donor-acceptor pair of hydroxy graphene quantum dots (GQDs-OH) and a red-emissive donor-two-acceptor (D-2-A) type dye with pyridinium units (BPBP) and the well-known host cucurbit[7]uril (CB[7]) has been exploited as a supramolecular sensing assembly for the detection of cancer biomarkers spermine and spermidine in aqueous media at the sub-ppb level based on the affinity-driven exchange of guests from the CB[7] portal. In the binary conjugate, green fluorescent GQDs-OH transfers energy to trigger the emission of the dye BPBP and itself remains in the turn-off state. CB[7] withdraws the dye from the surface of GQDs-OH by strong host-guest interactions with its portal, making GQDs-OH fluoresce again to produce a ratiometric response. In the presence of spermine (SP) or spermidine (SPD), their strong affinity with CB[7] forces the ejection of the fluorophore to settle on the GQDs-OH surface, and the strong green emission of GQDs-OH turns off to device a supramolecular sensor for the detection of SP/SPD. The DFT studies revealed interesting excited-state charge-transfer conjugate formation between BPBP and GQDs leading to turn-on emission of the dye, and further supported the stronger binding modes of BPBP-CB[7], indicating the retrieval of the emission of GQDs. The assembly-disassembly based sensing mechanism was also established by Job's plot analysis, particle size analysis, zeta potential, time-resolved spectroscopy, ITC studies, microscopic studies, etc. The supramolecular sensing assembly is highly selective to SP and SPD, and showed nominal interference from other biogenic amines, amino acids, various metal ions, and anions. The limits of detection (LODs) were 0.1 ppb and 0.9 ppb for spermine and spermidine, respectively. The potential for the real-world application of this sensing assembly was demonstrated by spiking SP and SPD in human urine and blood serum with a high %recovery.
Collapse
Affiliation(s)
- Akhil A Bhosle
- Department of Chemistry, BITS Pilani, K. K. Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India.
| | - Mainak Banerjee
- Department of Chemistry, BITS Pilani, K. K. Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India.
| | - Sharanabasava D Hiremath
- Department of Chemistry, BITS Pilani, K. K. Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India.
| | - Dilawar S Sisodiya
- Department of Chemistry, BITS Pilani, K. K. Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India.
| | - Viraj G Naik
- Department of Chemistry, BITS Pilani, K. K. Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India.
| | - Nilotpal Barooah
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Achikanath C Bhasikuttan
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Anjan Chattopadhyay
- Department of Chemistry, BITS Pilani, K. K. Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India.
| | - Amrita Chatterjee
- Department of Chemistry, BITS Pilani, K. K. Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India.
| |
Collapse
|
15
|
Karádi K, Kukovecz Á, Kónya Z, Sipos P, Pálinkó I, Varga G. Niacin and niacin-pillared layered double hydroxides—Novel organocatalysts based on pyridine. J Mol Struct 2022; 1261:132868. [DOI: 10.1016/j.molstruc.2022.132868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Bhawani, Shinde VN, Sonam, Rangan K, Kumar A. Mechanochemical Ruthenium-Catalyzed O rtho-Alkenylation of N-Heteroaryl Arenes with Alkynes under Ball-Milling Conditions. J Org Chem 2022; 87:5994-6005. [PMID: 35472259 DOI: 10.1021/acs.joc.2c00257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The mechanochemical, solvent-free Ru(II)-catalyzed alkenylation of N-heteroaryl arenes with alkynes has been successfully described. A wide spectrum of arenes bearing N-heteroaryl moieties such as imidazo[1,2-a]pyridine, imidazo[1,2-a]pyrimidine, benzo[d]imidazo[2,1-b]thiazole, imidazo[2,1-b]thiazole, 2H-indazole, 1H-indazole, 1H-pyrazole, and 1,2,4-oxadiazol-5(4H)-one as a directing group reacted with various substituted alkynes under ball milling in the presence of [Ru(p-cymene)Cl2]2, affording dialkenylated products in moderate to good yields. The reaction of 2,3-dihydrophthalazine-1,4-dione with 1-phenyl-1-propyne afforded a monoalkenylated product. Similarly, reaction of 2-phenylimidazo[1,2-a]pyridine with aliphatic terminal alkynes produced a monoalkenylated derivative as the major product along with minor amount of dialkenylated product. The developed method exhibited excellent functional group compatibility, broad substrate scope, shorter reaction times, and no external heating. Moreover, the method can be readily scaled-up as demonstrated by gram-scale synthesis of 2-(2,6-bis((E)1-phenylprop-1-en-2-yl)phenyl)imidazo[1,2-a]pyridine.
Collapse
Affiliation(s)
- Bhawani
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Vikki N Shinde
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Sonam
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Telangana 500078, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| |
Collapse
|
17
|
Shainyan BA, Zhilitskaya LV, Yarosh NO. Synthetic Approaches to Biologically Active C-2-Substituted Benzothiazoles. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082598. [PMID: 35458794 PMCID: PMC9027766 DOI: 10.3390/molecules27082598] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022]
Abstract
Numerous benzothiazole derivatives are used in organic synthesis, in various industrial and consumer products, and in drugs, with a wide spectrum of biological activity. As the properties of the benzothiazole moiety are strongly affected by the nature and position of substitutions, in this review, covering the literature from 2016, we focus on C-2-substituted benzothiazoles, including the methods of their synthesis, structural modification, reaction mechanisms, and possible pharmacological activity. The synthetic approaches to these heterocycles include both traditional multistep reactions and one-pot atom economy processes using green chemistry principles and easily available reagents. Special attention is paid to the methods of the thiazole ring closure and chemical modification by the introduction of pharmacophore groups.
Collapse
|
18
|
Banerjee M, Panjikar PC, Das D, Iyer S, Bhosle AA, Chatterjee A. Grindstone chemistry: A “green” approach for the synthesis and derivatization of heterocycles. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Bhosle AA, Banerjee M, Barooah N, Bhasikuttan AC, Kadu K, Ramanan SR, Chatterjee A. ESIPT-active hydroxybenzothiazole-picolinium@CB[7]-HAp NPs based supramolecular sensing assembly for spermine, spermidine and cadaverine: Application in monitoring cancer biomarkers and food spoilage. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Su M, Li H, He X, Xu Z. Significant enhancement of pesticide and organic dyes degradation by ion-exchange within a metal–organic framework. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Yuan Y, Wang L, Porcheddu A, Colacino E, Solin N. Mechanochemical Preparation of Protein : hydantoin Hybrids and Their Release Properties. CHEMSUSCHEM 2022; 15:e202102097. [PMID: 34817915 PMCID: PMC9299789 DOI: 10.1002/cssc.202102097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/20/2021] [Indexed: 05/04/2023]
Abstract
Mechanochemistry is a versatile methodology that can be employed both for covalent bond formation in organic synthesis as well as a mediator to allow preparation novel colloidal dispersions for drug delivery. Herein, ball-milling was employed for the solid-state preparation of fluorescent hydrophobic hydantoins, followed by the unprecedented mechanochemically-mediated complexation of hydrophobic hydantoins within hydrophilic protein β-lactoglobulin (BLG) and BLG nanofibrils (BLGNFs). These hydantoin:protein materials were in turn incorporated into hydrogels. The effect of incorporation of hydantoins into proteins, as well as the effect of protein structure, on the release properties were then investigated. The conversion of BLG to BLGNFs led to a more sustained release demonstrating that heat treatment of BLG into BLGNFs could be employed to modify release properties. To the best of our knowledge, this is the first example where protein : hydantoin complexes were prepared by mechanochemical methodology and mechanochemistry was combined with self-assembly in order to prepare protein nanomaterials for drug-delivery applications. In addition, the use of the developed protein materials is not limited to delivery of drugs but can for example be employed as components of smart food (delivery of nutrients) or release systems of pesticides.
Collapse
Affiliation(s)
- Yusheng Yuan
- Department of Physics, Chemistry, and BiologyBiomolecular and Organic ElectronicsLinköping University581 83LinköpingSweden
| | - Lei Wang
- Department of Physics, Chemistry, and BiologyBiomolecular and Organic ElectronicsLinköping University581 83LinköpingSweden
| | - Andrea Porcheddu
- Department of Chemical and Geological SciencesUniversity of CagliariCittadella UniversitariaSS 554 bivio per Sestu09042MonserratoItaly
| | | | - Niclas Solin
- Department of Physics, Chemistry, and BiologyBiomolecular and Organic ElectronicsLinköping University581 83LinköpingSweden
| |
Collapse
|
22
|
Bhosle AA, Banerjee M, Gupta V, Ghosh S, Bhasikuttan AC, Chatterjee A. Mechanochemical synthesis of an AIE-TICT-ESIPT active orange-emissive chemodosimeter for selective detection of hydrogen peroxide in aqueous media and living cells, and solid-phase quantitation using a smartphone. NEW J CHEM 2022. [DOI: 10.1039/d2nj03064k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report herein the design and mechanochemical synthesis of a chemodosimeter, benzothiazole-derived unsymmetrical azine protected by 4-bromomethylphenylboronic acid (BTPAB), an orange aggregation-induced emission (AIE), for the selective detection of H2O2 in a turn-on manner.
Collapse
Affiliation(s)
- Akhil A. Bhosle
- Department of Chemistry, BITS Pilani, K. K. Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India
| | - Mainak Banerjee
- Department of Chemistry, BITS Pilani, K. K. Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India
| | - Varsha Gupta
- CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
| | - Surajit Ghosh
- CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar 342037, Rajasthan, India
| | - Achikanath C. Bhasikuttan
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Amrita Chatterjee
- Department of Chemistry, BITS Pilani, K. K. Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India
| |
Collapse
|
23
|
Isci R, Unal M, Kucukcakir G, Gurbuz NA, Gorkem SF, Ozturk T. Triphenylamine/4,4'-Dimethoxytriphenylamine-Functionalized Thieno[3,2- b]thiophene Fluorophores with a High Quantum Efficiency: Synthesis and Photophysical Properties. J Phys Chem B 2021; 125:13309-13319. [PMID: 34807616 DOI: 10.1021/acs.jpcb.1c09448] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A wide series of 10 new triphenylamine (TPA)/4,4'-dimethoxytriphenylamine (TPA(OMe)2)-functionalized thieno[3,2-b]thiophene (TT) fluorophores, 4a-e and 5a-e, bearing different electron-donating and electron-withdrawing substituents (-PhCN, -PhF, -PhOMe, -Ph, and -C6H13) at the terminal thienothiophene units were designed and synthesized by the Suzuki coupling reaction. Their optical and electrochemical properties were investigated by experimental and computational studies. Solid-state fluorescent quantum yields were recorded to be from 20 to 69%, and the maximum solution-state quantum efficiency reached 97%. Moreover, the photophysical characterization of the novel chromophores demonstrated a significant Stokes shift, reaching 179 nm with a bathochromic shift. They exhibited tuning color emission from orange to dark blue in solution and showed fluorescence lifetime reaching 4.70 ns. The relationship between triphenylamine (TPA)/4,4'-dimethoxytriphenylamine (TPA(OMe)2)-derived triarylamines and different functional groups on thieno[3,2-b] thiophene units was discussed.
Collapse
Affiliation(s)
- Recep Isci
- Chemistry Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Melis Unal
- Chemistry Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Gizem Kucukcakir
- Chemistry Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Naime A Gurbuz
- Chemistry Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Sultan F Gorkem
- Chemistry Department, Eskisehir Technical University, 26470 Eskisehir, Turkey
| | - Turan Ozturk
- Chemistry Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey.,Chemistry Group Laboratories, TUBITAK UME, 41470 Gebze, Kocaeli, Turkey
| |
Collapse
|
24
|
Thomas Passia M, Schöbel JH, Julian Lentelink N, Truong KN, Rissanen K, Bolm C. Synthesis of trifluoromethyl-substituted 1,2,6-thiadiazine 1-oxides from sulfonimidamides under mechanochemical conditions. Org Biomol Chem 2021; 19:9470-9475. [PMID: 34708226 DOI: 10.1039/d1ob01912k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
TBS-protected or NH-sulfonimidamides react with β-alkoxyvinyl trifluoromethylketones under solvent-free mechanochemical conditions to give 3-trifluoromethyl-substituted three-dimensional 1,2,6-thiadiazine 1-oxides. C4-Functionalized products can be obtained by starting from cyclic enones and brominations of the initially formed heterocycles. The stability of the products was investigated by varying the pH value and storage under aerobic conditions.
Collapse
Affiliation(s)
- Marco Thomas Passia
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| | - Jan-Hendrik Schöbel
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| | - Niklas Julian Lentelink
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| | - Khai-Nghi Truong
- University of Jyvaskyla, Department of Chemistry, P.O. Box. 35, Survontie 9 B, 40014 Jyväskylä, Finland
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, P.O. Box. 35, Survontie 9 B, 40014 Jyväskylä, Finland
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| |
Collapse
|