1
|
Cronly D, Smyth M, Moody TS, Wharry S, Bruno-Colmenarez J, Twamley B, Baumann M. Structurally Diverse Nitrogen-Rich Scaffolds via Continuous Photo-Click Reactions. Org Lett 2024; 26:10559-10563. [PMID: 39592149 DOI: 10.1021/acs.orglett.4c03953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Continuous flow technology was exploited for the effective generation of nitrile imines via photolysis of substituted aryl tetrazoles. The resulting photo-click process rapidly affords advanced nitrogen-rich scaffolds upon the subsequent trapping of the reactive dipole with alkenes, alkynes, and benzylic amines. Crucially, this approach uncovers the differential reactivity for ether vs amine tethers, thus providing facile and scalable access to underexplored medicinally relevant heterocyclic entities.
Collapse
Affiliation(s)
- Davin Cronly
- School of Chemistry, University College Dublin, O'Brien Centre for Science, Belfield, Dublin 4, Ireland
| | - Megan Smyth
- Technology Department, Almac Sciences, Craigavon, BT63 5QD, U.K
| | - Thomas S Moody
- Technology Department, Almac Sciences, Craigavon, BT63 5QD, U.K
- Arran Chemical Company, Monksland Industrial Estate, Roscommon N37 DN24, Ireland
| | - Scott Wharry
- Technology Department, Almac Sciences, Craigavon, BT63 5QD, U.K
| | - Julia Bruno-Colmenarez
- School of Chemistry, University College Dublin, O'Brien Centre for Science, Belfield, Dublin 4, Ireland
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Marcus Baumann
- School of Chemistry, University College Dublin, O'Brien Centre for Science, Belfield, Dublin 4, Ireland
| |
Collapse
|
2
|
Maity B, Dutta S, Cavallo L. The mechanism of visible light-induced C-C cross-coupling by C sp3-H bond activation. Chem Soc Rev 2023; 52:5373-5387. [PMID: 37464786 DOI: 10.1039/d2cs00960a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Csp3-C cross-coupling by activating Csp3-H bonds is a dream reaction for the chemical community, and visible light-induced transition metal-catalysis under mild reaction conditions is considered a powerful tool to achieve it. Advancement of this research area is still in its infancy because of the chemical and technical complexity of this catalysis. Mechanistic studies illuminating the operative reaction pathways can rationalize the increasing amount of experimental catalysis data and provide the knowledge allowing faster and rational advances in the field. This goal requires complementary experimental and theoretical mechanistic studies, as each of them is unfit to clarify the operative mechanisms alone. In this tutorial review we summarize representative experimental and computational mechanistic studies, highlighting weaknesses, strengths, and synergies between the two approaches.
Collapse
Affiliation(s)
- Bholanath Maity
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Sayan Dutta
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
3
|
Abstract
The emergence of modern photocatalysis, characterized by mildness and selectivity, has significantly spurred innovative late-stage C-H functionalization approaches that make use of low energy photons as a controllable energy source. Compared to traditional late-stage functionalization strategies, photocatalysis paves the way toward complementary and/or previously unattainable regio- and chemoselectivities. Merging the compelling benefits of photocatalysis with the late-stage functionalization workflow offers a potentially unmatched arsenal to tackle drug development campaigns and beyond. This Review highlights the photocatalytic late-stage C-H functionalization strategies of small-molecule drugs, agrochemicals, and natural products, classified according to the targeted C-H bond and the newly formed one. Emphasis is devoted to identifying, describing, and comparing the main mechanistic scenarios. The Review draws a critical comparison between established ionic chemistry and photocatalyzed radical-based manifolds. The Review aims to establish the current state-of-the-art and illustrate the key unsolved challenges to be addressed in the future. The authors aim to introduce the general readership to the main approaches toward photocatalytic late-stage C-H functionalization, and specialist practitioners to the critical evaluation of the current methodologies, potential for improvement, and future uncharted directions.
Collapse
Affiliation(s)
- Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, 201210Shanghai, China
| | - Teresa Faber
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| |
Collapse
|
4
|
Wang T, Liu C, Xu D, Xu J, Yang Z. Iridium-Catalyzed and pH-Dependent Reductions of Nitroalkenes to Ketones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227822. [PMID: 36431923 PMCID: PMC9696932 DOI: 10.3390/molecules27227822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
A highly chemoselective conversion of α,β-disubstituted nitroalkenes to ketones is developed. An acid-compatible iridium catalyst serves as the key to the conversion. At a 2500 S/C ratio, nitroalkenes were readily converted to ketones in up to 72% isolated yields. A new mechanistic mode involving the reduction of nitroalkene to nitrosoalkene and N-alkenyl hydroxylamine is proposed. This conversion is ready to amplify to a gram-scale synthesis. The pH value plays an indispensable role in controlling the chemoselectivity.
Collapse
|
5
|
Griffiths O, Ley SV. Multicomponent Direct Assembly of N-Heterospirocycles Facilitated by Visible-Light-Driven Photocatalysis. J Org Chem 2022; 87:13204-13223. [PMID: 36103403 PMCID: PMC9552240 DOI: 10.1021/acs.joc.2c01684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Indexed: 11/29/2022]
Abstract
N-heterospirocycles are interesting structural units found in both natural products and medicinal compounds but have relatively few reliable methods for their synthesis. Here, we enlist the photocatalytic generation of N-centered radicals to construct β-spirocyclic pyrrolidines from N-allylsulfonamides and alkenes. A variety of β-spirocyclic pyrrolidines have been constructed, including drug derivatives, in moderate to very good yields. Further derivatization of the products has also been demonstrated as has a viable scale-up procedure, making use of flow chemistry techniques.
Collapse
Affiliation(s)
- Oliver
M. Griffiths
- Yusuf Hamied Department
of
Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Steven V. Ley
- Yusuf Hamied Department
of
Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| |
Collapse
|
6
|
MacMillan JWM, McGuire RT, Stradiotto M. Organic Base Enabled Nickel‐Catalyzed Mono‐α‐Arylation of Feedstock Solvents. Chemistry 2022; 28:e202200764. [DOI: 10.1002/chem.202200764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Joshua W. M. MacMillan
- Department of Chemistry Dalhousie University 6274 Coburg Road, P.O. Box 15000 Halifax, Nova Scotia B3H 4R2 Canada
| | - Ryan T. McGuire
- Department of Chemistry Dalhousie University 6274 Coburg Road, P.O. Box 15000 Halifax, Nova Scotia B3H 4R2 Canada
| | - Mark Stradiotto
- Department of Chemistry Dalhousie University 6274 Coburg Road, P.O. Box 15000 Halifax, Nova Scotia B3H 4R2 Canada
| |
Collapse
|
7
|
Ishida N, Shinoya H, Kamino Y, Kawasaki T, Murakami M. Dehydrogenative Three-Component Coupling of CO with Methylarenes Forming Dibenzyl Ketones. CHEM LETT 2022. [DOI: 10.1246/cl.220166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Naoki Ishida
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510
| | - Hiroki Shinoya
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510
| | - Yuka Kamino
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510
| | - Tairin Kawasaki
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510
| | - Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510
| |
Collapse
|
8
|
Bonciolini S, Noël T, Capaldo L. Synthetic Applications of Photocatalyzed Halogen‐radical mediated Hydrogen Atom Transfer for C−H Bond Functionalization. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Stefano Bonciolini
- University of Amsterdam: Universiteit van Amsterdam Van 't Hoff Institute for Molecular Sciences NETHERLANDS
| | - Timothy Noël
- University of Amsterdam: Universiteit van Amsterdam Van 't Hoff Institute for Molecular Sciences NETHERLANDS
| | - Luca Capaldo
- University of Amsterdam: Universiteit van Amsterdam Van 't Hoff Institute for Molecular Sciences Science Park 904 1098 XH Amsterdam NETHERLANDS
| |
Collapse
|
9
|
Bay AV, Farnam EJ, Scheidt KA. Synthesis of Cyclohexanones by a Tandem Photocatalyzed Annulation. J Am Chem Soc 2022; 144:7030-7037. [PMID: 35316053 PMCID: PMC9050940 DOI: 10.1021/jacs.1c13105] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The rapid synthesis of cyclic scaffolds is of high importance to the chemistry community. Strategies for the convergent synthesis of substituted carbocycles and heterocycles remain underexplored despite the plethora of applications that these cyclic motifs have in the pharmaceutical and materials industries. Reported herein is a tandem carbene and photoredox-catalyzed process for the convergent synthesis of substituted cycloalkanones via a formal [5 + 1] cycloaddition. Featuring two distinct photoredox cycles and a novel α-oxidation of benzylic ketones, this reaction offers a mild approach to construct two contiguous C-C bonds and eliminates the need for strong bases or expensive metal catalysts. The utility of this method is highlighted through various product diversification reactions that allow access to a range of important cyclic scaffolds.
Collapse
Affiliation(s)
- Anna V Bay
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Emelia J Farnam
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Karl A Scheidt
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
10
|
Qu CH, Huang R, Liu Y, Liu T, Song GT. Bromine-radical-induced C sp2–H difluoroalkylation of quinoxalinones and hydrazones through visible-light-promoted C sp3–Br bond homolysis. Org Chem Front 2022. [DOI: 10.1039/d2qo00710j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bromine radicals derived from photo-induced Csp3–Br bond homolysis can mediate H abstraction/imine radical formation from quinoxalinones and hydrazones, which in turn quench the in situ-generated difluoroalkyl radicals to furnish the products.
Collapse
Affiliation(s)
- Chuan-Hua Qu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Run Huang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Yuan Liu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Tong Liu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Gui-Ting Song
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| |
Collapse
|