1
|
Yu TT, Huang PT, Chen BH, Zhong YJ, Han B, Peng C, Zhan G, Huang W, Zhao Q. Construction of 3,4-Dihydroquinolone Derivatives through Pd-Catalyzed [4+2] Cycloaddition of Vinyl Benzoxazinanones with α-Alkylidene Succinimides. J Org Chem 2024; 89:3279-3291. [PMID: 38377542 DOI: 10.1021/acs.joc.3c02728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The construction of 3,4-dihydroquinolone derivatives has attracted a considerable amount of attention due to their extensive applications in medicinal chemistry. In this study, we present the Pd-catalyzed [4+2] cycloaddition of vinyl benzoxazinanones with α-alkylidene succinimides for the efficient synthesis of 3,4-dihydroquinolones. This approach presents numerous advantages, including the ready availability of starting materials, mild reaction conditions without the use of additional bases, and a wide range of substrates. In particular, all of the desired products can be easily afforded in high yields (≤99%) and excellent diastereoselectivities (>20:1). The practicality and reliability of this strategy were demonstrated by the successful scale-up synthesis and subsequent straightforward synthetic transformations.
Collapse
Affiliation(s)
- Ting-Ting Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peng-Ting Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ben-Hong Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ya-Jun Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
2
|
Huang W, Rao X, Shi L, Yang B, Kuang B, Wu H, Ke S, Liu C. N-Arylation of Amino Acid Esters via an I 2-Mediated Metal-Free Multicomponent Benzannulation Strategy. J Org Chem 2023; 88:16649-16654. [PMID: 37967371 DOI: 10.1021/acs.joc.3c01907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Herein, we present a novel method for the N-arylation of amino acid esters using α-bromoacetaldehyde acetal and acetoacetate via an I2-mediated metal-free benzannulation strategy, which disclosed the first synthetic application of N-arylation of amino acids using nonaromatic building blocks. The synthesized N-arylated amino acid derivatives were found to possess promising selective inhibition against human hepatocellular liver carcinoma cells, human melanoma cells, and human normal liver cells, with an IC50 value as low as 16.79 μg·mL-1.
Collapse
Affiliation(s)
- Wenbo Huang
- Hubei Three Gorges Laboratory, Yichang 443007, China
| | - Xiaofeng Rao
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518108, China
| | - Liqiao Shi
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Bing Yang
- Hubei Three Gorges Laboratory, Yichang 443007, China
| | - Buxiao Kuang
- Hubei Three Gorges Laboratory, Yichang 443007, China
| | - Hongqu Wu
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shaoyong Ke
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Changhui Liu
- School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
3
|
Li HP, He XH, Peng C, Li JL, Han B. A straightforward access to trifluoromethylated natural products through late-stage functionalization. Nat Prod Rep 2023; 40:988-1021. [PMID: 36205211 DOI: 10.1039/d2np00056c] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Covering: 2011 to 2021Trifluoromethyl (CF3)-modified natural products have attracted increasing interest due to their magical effect in binding affinity and/or drug metabolism and pharmacokinetic properties. However, the chemo and regioselective construction of natural products (NPs) bearing a CF3 group still remains a long-standing challenge due to the complex chemical scaffolds and diverse reactive sites of NPs. In recent years, the development of late-stage functionalization strategies, including metal catalysis, organocatalysis, light-driven reactions, and electrochemical synthesis, has paved the way for direct trifluoromethylation process. In this review, we summarize the applications of these strategies in the late-stage trifluoromethylation of natural products in the past ten years with particular emphasis on the reaction model of each method. We also discuss the challenges, limitations, and future prospects of this approach.
Collapse
Affiliation(s)
- He-Ping Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiang-Hong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jun-Long Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
4
|
He S, Wang J, Zheng J, Luo QQ, Leng H, Zheng S, Peng C, Han B, Zhan G. Organocatalytic (5+1) benzannulation of Morita–Baylis–Hillman carbonates: synthesis of multisubstituted 4-benzylidene pyrazolones. NEW J CHEM 2022. [DOI: 10.1039/d2nj01949c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DABCO-catalyzed (5+1) cycloaddition of MBH carbonate undergoes an α-double deprotonation pathway to de novo assemble the benzene ring.
Collapse
Affiliation(s)
- Shurong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Jie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Jinfeng Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Qing-Qing Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Haijun Leng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Sixiang Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|