1
|
Li X, Yuan X, Wu Y, Guo H, Liu Q, Huang S. Synthesis of 3,4,5-Trisubstituted 1,2,4-Triazoles via I 2-Catalyzed Cycloaddition of Amidines with Hydrazones. J Org Chem 2024; 89:5277-5286. [PMID: 38587487 DOI: 10.1021/acs.joc.3c02637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
A general and practical method for the construction of various 3,4,5-trisubstituted 1,2,4-triazoles via I2-catalyzed cycloaddition of N-functionalized amidines with hydrazones is reported. This strategy features cheap and readily available catalyst and starting materials, broader substrate scope, and moderate-to-good yields. The mechanism study shows that the existence of hydrogen on the nitrogen of hydrazones is crucial for this transformation.
Collapse
Affiliation(s)
- Xing Li
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China
| | - Xinyufei Yuan
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China
| | - Yuting Wu
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China
| | - Honghong Guo
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China
| | - Qiang Liu
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China
| | - Shuangping Huang
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China
| |
Collapse
|
2
|
Yamamoto A, Tanaka K, Hashimoto Y, Morita N, Tamura O. Intermolecular 1,3-Dipolar Cycloaddition Reaction of N-Carbamoyl Nitrones Generated by N-Selective Carbamoylation of Oximes with Isocyanates. Chemistry 2023:e202303790. [PMID: 38055213 DOI: 10.1002/chem.202303790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/07/2023]
Abstract
N-Selective carbamoylation reaction of oximes with isocyanates generates nitrones, which undergo 1,3-dipolar cycloaddition with various dipolarophiles to afford diverse isoxazolidines. Notably, combinations of highly electron-rich oxime and highly electron-deficient dipolarophile exhibited high reactivity, with product yields of up to 94 %. The substituent on the isoxazolidine-nitrogen atom could be successfully removed without loss of the cyclic structure. Computational studies have also elucidated the mechanism of the reaction and origin of stereoselectivity.
Collapse
Affiliation(s)
- Ayaka Yamamoto
- Showa Pharmaceutical University, Higashi-Tamagawagakuen, 194-8543, Machida, Tokyo, Japan
| | - Kosaku Tanaka
- Showa Pharmaceutical University, Higashi-Tamagawagakuen, 194-8543, Machida, Tokyo, Japan
- Present Address: Research Foundation ITSUU Laboratory, C1232 Kanagawa Science Park R & D Building Sakado, Takatsu-ku, 213-0012, Kawasaki, Kanagawa, Japan
| | - Yoshimitsu Hashimoto
- Showa Pharmaceutical University, Higashi-Tamagawagakuen, 194-8543, Machida, Tokyo, Japan
| | - Nobuyoshi Morita
- Showa Pharmaceutical University, Higashi-Tamagawagakuen, 194-8543, Machida, Tokyo, Japan
| | - Osamu Tamura
- Showa Pharmaceutical University, Higashi-Tamagawagakuen, 194-8543, Machida, Tokyo, Japan
| |
Collapse
|
3
|
Li W, Lin J, Huang S, Liu Q, Wei W, Li X. Cycloaddition of N-arylnitrones with donor-acceptor oxiranes via C-C bond cleavage to construct 1,5,2-dioxazinanes. Org Biomol Chem 2023; 21:6778-6782. [PMID: 37564027 DOI: 10.1039/d3ob00375b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Highly functionalized 1,5,2-dioxazinanes could be smoothly produced via a Sc(OTf)3-catalyzed chemoselective [3 + 3] cycloaddition of various N-arylnitrones with a series of donor-acceptor oxiranes. This reaction involves in situ generation of 1,3-dipoles through Sc(OTf)3-catalyzed C-C bond cleavage of oxiranes and moderate to high yields were obtained for most substrates. This transformation features C-C bond cleavage of donor-acceptor oxiranes, accessible starting materials and mild reaction conditions.
Collapse
Affiliation(s)
- Wenhui Li
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| | - Jianying Lin
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| | - Shuangping Huang
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| | - Qiang Liu
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| | - Wenlong Wei
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| | - Xing Li
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| |
Collapse
|
4
|
Wu Y, Liu Q, Huang S, Zhang C, Wei W, Li X. Cu(OAc) 2-catalyzed three-component cycloaddition of malonates, nitrosoarenes and alkenes: access to isoxazolidines. Org Biomol Chem 2023; 21:3669-3674. [PMID: 37067779 DOI: 10.1039/d3ob00189j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The Cu(OAc)2-catalyzed one-pot three-component cycloaddition of malonates, nitrosoarenes and alkenes is described. A wide range of isoxazolidines could be obtained in moderate to excellent yields via this method. Mechanistic investigations indicated that the key step in this catalytic system is the straightforward formation of nitrone intermediates through the Cu(OAc)2-catalyzed reaction of malonates with nitrosoarenes.
Collapse
Affiliation(s)
- Yuting Wu
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| | - Qiang Liu
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| | - Shuangping Huang
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| | - Chaofeng Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| | - Wenlong Wei
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| | - Xing Li
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| |
Collapse
|
5
|
Synthetic utility of styrenes in the construction of diverse heterocycles via annulation/cycloaddition. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
6
|
Synthesis, X-ray Structure and Biological Studies of New Self-Assembled Cu(II) Complexes Derived from s-triazine Schiff Base Ligand. Molecules 2022; 27:molecules27092989. [PMID: 35566339 PMCID: PMC9106035 DOI: 10.3390/molecules27092989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
The two ligands 2-(1-(2-(4,6-dimorpholino-1,3,5-triazin-2-yl)hydrazono)ethyl)aniline (DMAT) and 2-(1-(2-(4,6-dimorpholino-1,3,5-triazin-2-yl)hydrazono)ethyl)phenol (DMOHT) were used to synthesize three heteroleptic Cu(II) complexes via a self-assembly technique. The structure of the newly synthesized complexes was characterized using elemental analysis, FTIR and X-ray photoelectron spectroscopy (XPS) to be [Cu(DMAT)(H2O)(NO3)]NO3.C2H5OH (1), [Cu(DMOT)(CH3COO)] (2) and [Cu(DMOT)(NO3)] (3). X-ray single-crystal structure of complex 1 revealed a hexa-coordinated Cu(II) ion with one DMAT as a neutral tridentate NNN-chelate, one bidentate nitrate group and one water molecule. In the case of complex 2, the Cu(II) is tetra-coordinated with one DMOT as an anionic tridentate NNO-chelate and one monodentate acetate group. The antimicrobial, antioxidant and anticancer activities of the studied compounds were examined. Complex 1 had the best anticancer activity against the lung carcinoma A-549 cell line (IC50 = 5.94 ± 0.58 µM) when compared to cis-platin (25.01 ± 2.29 µM). The selectivity index (SI) of complex 1 was the highest (6.34) when compared with the free ligands (1.3–1.8), and complexes 2 (0.72) and 3 (2.97). The results suggested that, among those compounds studied, complex 1 is the most promising anticancer agent against the lung carcinoma A-549 cell line. In addition, complex 1 had the highest antioxidant activity (IC50 = 13.34 ± 0.58 µg/mL) which was found to be comparable to the standard ascorbic acid (IC50 = 10.62 ± 0.84 µg/mL). Additionally, complex 2 showedbroad-spectrum antimicrobial action against the microbes studied. The results revealed it to possess the strongest action of all the three complexes against B. subtilis. The MIC values found are 39.06, 39.06 and 78.125 mg/mL for complexes 1–3, respectively.
Collapse
|