1
|
Chen L, Huang H, Liu X, Zhao P, Zhou B. Isolation and characterization of a novel oxyphenisatin analogue, 4-Chloro-oxyphenisatin diisobutyrate, from a jelly candy purported to possess weight-loss properties. J Pharm Biomed Anal 2025; 260:116804. [PMID: 40058082 DOI: 10.1016/j.jpba.2025.116804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 04/06/2025]
Abstract
A novel oxyphenisatin analogue was identified in a type of jelly candy during routine inspections of food products marketed for weight-loss purposes. Through analysis utilizing ultra-high-performance quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap-HRMS), the fragment ions at m/z 258 and 195 observed in the MS/MS experiments were found to be consistent with those of 4-Chloro-oxyphenisatin diacetate. It was inferred that the unknown compound is likely a derivative of 4-Chloro-oxyphenisatin diacetate. The candy was separated and purified by column chromatography, and the purified compound was determined to be 96.4 % by high-performance liquid chromatography (HPLC). Subsequently, the structure was confirmed through nuclear magnetic resonance (NMR) spectroscopy. Based on the data, it was concluded that the structure of the unknown compound involved the substitution of two symmetrical acetyl groups in the 4-chloro-oxyphenisatin diacetate molecule with two isobutyl groups. Ultimately, the novel oxyphenisatin analogue was identified as (5-chloro-2-oxoindolin-3,3-ylidene) bis (4,1-phenylbutan-2-yl) diisobutyrate and designated as 4-Chloro-oxyphenisatin diisobutyrate. Finally, a quantitative analysis of the novel unknown compound in the jelly candy revealed a concentration of 6 mg per pellet. Based on the recommended daily consumption of one pellet, as indicated on the product packaging, the level of illegal additives may lead to diarrhoea and consequently poses a risk to human health. To the best of our knowledge, this represents the first report on the identification of 4-Chloro-oxyphenisatin diisobutyrate.
Collapse
Affiliation(s)
- Lin Chen
- Nanyang Product Quality Inspection and Testing Center, Nanyang, China.
| | - Han Huang
- Nanyang Medical College, Nanyang, China
| | - Xiali Liu
- Henan Institute of Food and Salt Industry Inspection Technology, Zhengzhou, China
| | - Peijing Zhao
- Nanyang Product Quality Inspection and Testing Center, Nanyang, China
| | - Biao Zhou
- Nanyang Institute of Technology, Nanyang, China
| |
Collapse
|
2
|
Steinsits D, Rávai B, Kelemen Z, Hackler L, Vernyik V, Puskás LG, Bálint E. 3,3-Bis(hydroxyaryl)oxindoles and Spirooxindoles Bearing a Xanthene Moiety: Synthesis, Mechanism, and Biological Activity. J Org Chem 2025; 90:6454-6467. [PMID: 40331623 DOI: 10.1021/acs.joc.5c00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
A facile and efficient methanesulfonic acid-catalyzed, solvent-free, microwave-assisted method was developed for the synthesis of biologically active 3,3-bis(hydroxyaryl)oxindoles and spirooxindoles bearing a xanthene moiety. The scope of the procedure was investigated with a wide range of isatin and phenol derivatives; moreover, the reaction mechanism was studied by density functional theory calculations. Both 3,3-bis(hydroxyaryl)oxindoles and spirooxindoles bearing a xanthene moiety synthesized were evaluated for their anticancer and antimicrobial activity, and most of them showed promising or significant activity on six cancer cell lines and against Gram-positive bacteria.
Collapse
Affiliation(s)
- Dániel Steinsits
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Bettina Rávai
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- CycloLab Cyclodextrin Research and Development Ltd., Illatos út 7, H-1097 Budapest, Hungary
| | - Zsolt Kelemen
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - László Hackler
- Anthelos Kft., Alsó kikötő sor 11., H-6726 Szeged, Hungary
| | - Viktor Vernyik
- Anthelos Kft., Alsó kikötő sor 11., H-6726 Szeged, Hungary
| | | | - Erika Bálint
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| |
Collapse
|
3
|
Jha P, Husen S, Kumar R. Building an All Carbon Quaternary Center via Redox-Neutral Geminal Dual C-H Functionalization of Oxindoles. Org Lett 2025; 27:1864-1870. [PMID: 40017335 DOI: 10.1021/acs.orglett.5c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Reported here is a catalytic redox-neutral geminal dual C-H functionalization of oxindoles with two distinct aromatics using anilines. The reaction proceeded through a pluripotent tetra-substituted alkene intermediate via an extended resonance stabilized carbocation. It furnished wide chemical space around oxindoles with the generation of all carbon quaternary centers (>35 examples) in good to excellent yields. The developed process is highly regioselective and scalable, and the conditions are environmentally benign in nature.
Collapse
Affiliation(s)
- Priyankar Jha
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Saddam Husen
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, UP, India
| | - Ravindra Kumar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, UP, India
| |
Collapse
|
4
|
Khan J, Tyagi A, Samanta R, Hazra CK. Chemoselective deoxygenative α-arylation of carboxylic acids, amides, and esters: synthesis of anesthetic and anti-inflammatory compounds. Chem Commun (Camb) 2024; 60:10688-10691. [PMID: 39238418 DOI: 10.1039/d4cc03660c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
A metal-free strategy has been developed for the α-arylation of carboxylic acids, secondary amides, and esters employing arenes as key reagents. This process entails the Lewis-acid catalyzed reductive Friedel-Crafts alkylation of arenes utilizing α-ketoacids, facilitated by silane in HFIP solvent. The transformation exhibits exceptional functional group tolerance, enabling late-stage functionalization of natural products. This one-step protocol has been successfully used to synthesize commercially available drugs, such as adiphenine, piperidolate, derivatives of ketoprofen, ibuprofen, flurbiprofen, and the pesticide bromopropylate.
Collapse
Affiliation(s)
- Jabir Khan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Aparna Tyagi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Rima Samanta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Chinmoy Kumar Hazra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
5
|
Lamba M, Singh PR, Tanmay, Goswami A. Metal-Free Switchable Chemo- and Regioselective Alkylation of Oxindoles Using Secondary Alcohols. J Org Chem 2024; 89:11244-11260. [PMID: 39106447 DOI: 10.1021/acs.joc.4c00903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
In this study, we have disclosed N-alkylation and C-alkylation reactions of 2-oxindoles with secondary alcohols. Interestingly, these chemoselective reactions are tunable by changing the reaction conditions. Utilization of protic solvent and Brønsted acid catalyst afforded C-alkylation, whereas, aprotic solvent and Lewis acid catalyst afforded N-alkylation of 2-oxindoles in good to excellent yields. Regioselectivity is achieved by protecting the N-center of the oxindole and C5 alkylated product is furnished exclusively. This protocol is notable because it demonstrates functionalization at the C7 position of oxindole without the need for any directing group at the N-center. Further, a new protocol has been reported for C-H oxygenation at the benzylic position of one of the C5 alkylated derivative.
Collapse
Affiliation(s)
- Manisha Lamba
- Department of Chemistry, SS Bhatnagar Block, Indian Institute of Technology Ropar, Punjab140001, India
| | - Prasoon Raj Singh
- Department of Chemistry, SS Bhatnagar Block, Indian Institute of Technology Ropar, Punjab140001, India
| | - Tanmay
- Department of Chemistry, SS Bhatnagar Block, Indian Institute of Technology Ropar, Punjab140001, India
| | - Avijit Goswami
- Department of Chemistry, SS Bhatnagar Block, Indian Institute of Technology Ropar, Punjab140001, India
| |
Collapse
|
6
|
Xia J, Wu W, Huang X, Jiang F, Zhu S, Chen L, Fan X. Isolation, characterization, identification and quantification of 6-F oxyphenisatin dipropionate, a novel illegal additive, from a fruit-flavored jelly. Heliyon 2024; 10:e29902. [PMID: 38707292 PMCID: PMC11066336 DOI: 10.1016/j.heliyon.2024.e29902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/06/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024] Open
Abstract
Objective This study is aimed to screen, identify and detect illegal additives from healthcare products which claim or imply to have weight-loss effects. Method Ultra-high performance liquid chromatography-quadruple-time-of-flight mass spectroscopy (UPLC-Q-TOF/MS) was employed to perform non-targeted screening of illegal additives from a total of 26 batches of healthcare products with weight-loss effects. A novel oxyphenisatin dipropionate analog was discovered in a fruit-flavored jelly that was not clearly labeled as containing added drugs. After being separated and purified by silica gel column chromatography, the analog was unambiguously characterized by one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopies. The molecular structure of the analog was finally identified by comparing the spectra of the analog with those of suspected candidates prepared by de novo synthesis strategy. Thereafter, a sensitive and precise reversed phase ultra performance liquid chromatography coupled with photodiode array (UPLC-PDA) detection method was developed and verified for the determination of the analog in 15 batches of real samples. Results In the MS/MS spectra, the signal intensity of mass/charge ratios (m/z, 242 and 214) of the novel analog fragments was highly similar to that of mass/charge ratios (m/z, 224 and 196) of oxyphenisatin dipropionate fragments. Additionally, the 1D NMR spectrum of the analog was completely consistent with that of one of the suspected candidates prepared by the de novo synthesis strategy. Based on the above analysis, the structure of the analog was determined as 3,3-bis[4'-(propionyloxy)phenyl]-6-fluoro-2-oxoindoline, which was briefly named 6-F oxyphenisatin dipropionate. A developed quantitative method showed good linearity (R2 > 0.999) in a concentration range of 1.0-100 μg/mL. The limits of detection (LOD) and quantification (LOQ) for the analog was 3 mg/kg and 10 mg/kg, respectively. The average recoveries of the analog from spiked three different matrix samples in low (1 time of LOQ), medium (2 times of LOQ), and high (10 times of LOQ) concentrations were varied from 93.9 % to 107.8 % with a precision of 0.03-1.56 %. Results of quantitative analysis in 15 batches of healthcare products revealed that the content of 6-F oxyphenisatin dipropionate in a fruit-flavored jelly and a solid beverage was 118 mg/kg and 330 mg/kg, respectively. Conclusion In terms of its structure, 6-F oxyphenisatin dipropionate replaces hydrogen atom by the fluorine atom at position 6 on the indolinone fragment in oxyphenisatin dipropionate. To our best knowledge, 6-F oxyphenisatin dipropionate has never been detected as an illegal additive in foods. Such illegal addition of the analog to foods is more concealing, thus the supervision and testing departments should attach great importance to its application in food markets.
Collapse
Affiliation(s)
- Jintao Xia
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, 430075, China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan, 430075, China
- Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, 430075, China
| | - Wanqin Wu
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, 430075, China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan, 430075, China
- Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, 430075, China
| | - Xiuxiu Huang
- Huanggang Central Hospital, Huanggang, 438000, China
| | - Feng Jiang
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, 430075, China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan, 430075, China
- Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, 430075, China
| | - Songsong Zhu
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, 430075, China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan, 430075, China
- Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, 430075, China
| | - Li Chen
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, 430075, China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan, 430075, China
- Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, 430075, China
| | - Xiaolong Fan
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, 430075, China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan, 430075, China
- Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, 430075, China
| |
Collapse
|
7
|
Singh PR, Lamba M, Goswami A. Copper-Catalyzed Chemoselective O-Arylation of Oxindoles: Access to Cyclic Aryl Carboxyimidates. J Org Chem 2024; 89:2926-2938. [PMID: 38354326 DOI: 10.1021/acs.joc.3c02341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
We have developed a highly efficient base- and additive-free chemoselective CuO-catalyzed strategy for the O-arylation of 2-oxindoles to synthesize 2-phenoxy-3H-indole and 2-phenoxy-1H-indole derivatives in the presence of diaryl iodonium salts. This method offers a variety of O-arylated oxindoles in good to excellent yields under relatively milder reaction conditions. Furthermore, this methodology was extended for the O-arylation of 2-pyridinone and isoindoline-1-one derivatives as well.
Collapse
Affiliation(s)
- Prasoon Raj Singh
- Department of Chemistry, SS Bhatnagar Block, Indian Institute of Technology, Ropar 140001, Punjab, India
| | - Manisha Lamba
- Department of Chemistry, SS Bhatnagar Block, Indian Institute of Technology, Ropar 140001, Punjab, India
| | - Avijit Goswami
- Department of Chemistry, SS Bhatnagar Block, Indian Institute of Technology, Ropar 140001, Punjab, India
| |
Collapse
|
8
|
Kamboj P, Mohapatra A, Mandal D, Tyagi V. Experimental and computational investigation of the α-amylase catalyzed Friedel-Crafts reaction of isatin to access symmetrical and unsymmetrical 3,3',3''-trisindoles. Org Biomol Chem 2024; 22:1839-1849. [PMID: 38345333 DOI: 10.1039/d3ob01928d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Trisindoles are of tremendous interest due to their wide range of biological activities. In this context, a number of methods have been reported in the past to synthesize 3,3',3''-trisindoles. However, most of the methods are only able to produce symmetrical 3,3',3''-trisindoles. Herein, we develop a sustainable and efficient approach to synthesize symmetrical as well as unsymmetrical 3,3',3''-trisindoles in a very selective manner using the α-amylase enzyme as a catalyst. Furthermore, various differently substituted isatin and indoles were used to prove the generality of the protocol and symmetrical or unsymmetrical 3,3',3''-trisindoles were obtained in 43-97% isolated yields. Next, a probable mechanism is proposed and investigated using molecular dynamics (MD) investigation to gain more insight into the role of residues available in the active site of the α-amylase enzyme. These studies revealed that Glu230, Lys209, and Asp206 in the active site of α-amylase play an important role in this catalysis. Moreover, the DFT studies suggested the formation of bisindole and alkylideneindolenine intermediates during the transformation. We synthesized four different biologically important 3,3',3''-trisindoles on a gram scale, which proved the robustness and scalability of this protocol.
Collapse
Affiliation(s)
- Priya Kamboj
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology (TIET), Patiala-147004, Punjab, India.
| | - Abinash Mohapatra
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology (TIET), Patiala-147004, Punjab, India.
| | - Debasish Mandal
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology (TIET), Patiala-147004, Punjab, India.
| | - Vikas Tyagi
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology (TIET), Patiala-147004, Punjab, India.
| |
Collapse
|
9
|
Singh S, Mondal S, Tiwari V, Karmakar T, Hazra CK. Cooperative Friedel-Crafts Alkylation of Electron-Deficient Arenes via Catalyst Activation with Hexafluoroisopropanol. Chemistry 2023; 29:e202300180. [PMID: 36680470 DOI: 10.1002/chem.202300180] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
A Friedel-Crafts alkylation of electron-deficient arenes with aldehydes through ''catalyst activation'' is presented. Through hydrogen bonding interactions, the solvent 1,1,1,3,3,3, -hexafluoroisopropanol (HFIP) interacted with the added Brønsted acid catalyst pTSA•H2 O, increasing its acidity. This activated catalyst enabled the Friedel-Crafts alkylation of electron-neutral as well as electron-deficient arenes. Strongly electron withdrawing arenes including arenes with multiple halogen atoms, NO2 , CHO, CO2 R, and CN, groups acted as efficient nucleophiles in this reaction. DFT studies reveal multiple roles of solvent HFIP viz; increasing the Brønsted acidity of the catalyst pTSA•H2 O, and stabilization of the transition states through a concerted pathway enabling the challenging reaction.
Collapse
Affiliation(s)
- Sanjay Singh
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas, New Delhi, 110016, India
| | - Sankalan Mondal
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas, New Delhi, 110016, India
| | - Vikas Tiwari
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas, New Delhi, 110016, India
| | - Tarak Karmakar
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas, New Delhi, 110016, India
| | - Chinmoy Kumar Hazra
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
10
|
Arza CR, Li X, İlk S, Liu Y, Demircan D, Zhang B. Biocompatible non-leachable antimicrobial polymers with a nonionic hyperbranched backbone and phenolic terminal units. J Mater Chem B 2022; 10:8064-8074. [PMID: 36111601 DOI: 10.1039/d2tb01233b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work aimed to develop biocompatible non-leachable antimicrobial polymers without ionic structures. A series of nonionic hyperbranched polymers (HBPs) with an isatin-based backbone and phenolic terminal units were synthesized and characterized. The molecular structures and thermal properties of the obtained HBPs were characterized by SEC, NMR, FTIR, TGA and DSC analyses. Disk diffusion assay revealed significant antibacterial activity of the obtained phenolic HBPs against nine different pathogenic bacteria. The presence of a methoxy or long alkyl group close to the phenolic unit enhanced the antibacterial effect against certain Gram positive and negative bacteria. The obtained nonionic HBPs were blended in polyester poly(hexamethylene terephthalate) films, which showed no noticeable leakage after being immersed in water for 5 days. Finally, these HBPs showed no cytotoxicity effect to MG-63 osteoblast-like human cells according to MTT analysis, and negligible hemolytic effect.
Collapse
Affiliation(s)
- Carlos R Arza
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.
| | - Xiaoya Li
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.
| | - Sedef İlk
- Niğde Ömer Halisdemir University, Faculty of Medicine, Department of Immunology, TR-51240 Niğde, Turkey
| | - Yang Liu
- Faculty of Medicine, Department of Clinical Sciences, Orthopedics, Lund University, Lund, Sweden
| | - Deniz Demircan
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.
| | - Baozhong Zhang
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.
| |
Collapse
|
11
|
Khan J, Yadav N, Tyagi A, Hazra CK. Silyl Cation-Initiated, Brønsted Acid-Catalyzed Strategy toward Unsymmetrical 3,3-Disubstituted 2-Oxindoles and Azonazine Cores. J Org Chem 2022; 87:11097-11111. [PMID: 35930369 DOI: 10.1021/acs.joc.2c01351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Herein, a mild, metal-free, robust approach for synthesizing valuable and sterically demanding unsymmetrical 3,3-disubstituted 2-oxindoles via reductive cyclization of α-ketoamides is reported. This operationally simple protocol is initiated by a silyl cation and further catalyzed by a Brønsted acid. We have utilized a wide range of arenes, amines, and thiols as coupling partners with various α-ketoamides. The products were afforded in excellent regioselectivity and good functional group tolerance. This procedure provides easy access to the scaffolds of azonazine and its derivatives with an excellent syn-diastereoselectivity bearing all-carbon quaternary stereocenters.
Collapse
Affiliation(s)
- Jabir Khan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Naveen Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Aparna Tyagi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Chinmoy Kumar Hazra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
12
|
Vodnala N, Singh S, Hazra CK. Lewis Acid-Promoted Typical Friedel-Crafts Reactions Using DMSO as a Carbon Source. J Org Chem 2022; 87:10044-10053. [PMID: 35857352 DOI: 10.1021/acs.joc.2c01037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This study reports a mild and efficient synthetic protocol for the synthesis of symmetrical and unsymmetrical diarylmethanes (DAMs). Using DMSO as the C1 source and TMSOTf as the Lewis acid promoter, a series of functionalized symmetrical and unsymmetrical DAMs were synthesized in high yields. Gratifyingly, DMSO plays a dual role as a solvent and a C1 source and can also be replaced with its deuterated counterpart, DMSO-d6, enabling the incorporation of the -CD2 moiety into the diarylmethane skeleton. The developed approach has been applied to a wide range of substrates having various functional groups, and this protocol has also been extended to the synthesis of an anti-breast cancer agent and an anticoagulant agent using common feedstock compounds. In addition, the postulated mechanism has been explicitly demonstrated via control experiments.
Collapse
Affiliation(s)
- Nagaraju Vodnala
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sanjay Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Chinmoy Kumar Hazra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
13
|
Tyagi A, Khan J, Yadav N, Mahato R, Hazra CK. Catalyst-Switchable Divergent Synthesis of Bis(indolyl)alkanes and 3-Alkylated Indoles from Styrene Oxides. J Org Chem 2022; 87:10229-10240. [PMID: 35856651 DOI: 10.1021/acs.joc.2c01204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel and effective Brønsted acid-catalyzed chemoselective synthesis of bis(indolyl)alkanes and 3-alkyl indoles is reported. The selectivity of two significant indole derivatives is attained by allowing the same substrates to go through divergent reaction routes catalyzed by different catalysts. Furthermore, this mild approach is applicable to a wide range of substrates and has high efficacy in large-scale reactions. A plausible mechanism is provided based on the control experiments and spectroscopic studies.
Collapse
Affiliation(s)
- Aparna Tyagi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Jabir Khan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Naveen Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Rina Mahato
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Chinmoy Kumar Hazra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
14
|
Cheng X, Wang L, Liu Y, Wan X, Xiang Z, Li R, Wan X. Molecular Iodine‐Catalysed Reductive Alkylation of Indoles: Late‐Stage Diversification for Bioactive Molecules. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xionglve Cheng
- Soochow University College of Chemistry, Chemical Engineering and Materials Science 215123 Suzhou CHINA
| | - Lili Wang
- Soochow University College of Chemistry, Chemical Engineering and Materials Science 215123 Suzhou CHINA
| | - Yide Liu
- Soochow University College of Chemistry, Chemical Engineering and Materials Science 215123 Suzhou CHINA
| | - Xiao Wan
- Soochow University College of Chemistry, Chemical Engineering and Materials Science 215123 Suzhou CHINA
| | - Zixin Xiang
- Soochow University College of Chemistry, Chemical Engineering and Materials Science 215123 Suzhou CHINA
| | - Ruyi Li
- Soochow University College of Chemistry, Chemical Engineering and Materials Science 215123 Suzhou CHINA
| | - Xiaobing Wan
- Soochow University College of Chemistry, Chemical Engineering and Materials Science Renai road 215123 Suzhou CHINA
| |
Collapse
|
15
|
Singh S, Mahato R, Sharma P, Yadav N, Vodnala N, Kumar Hazra C. Development of Transition-Metal-Free Lewis Acid-Initiated Double Arylation of Aldehyde: A Facile Approach Towards the Total Synthesis of Anti-Breast-Cancer Agent. Chemistry 2022; 28:e202104545. [PMID: 35060647 DOI: 10.1002/chem.202104545] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 12/21/2022]
Abstract
This work describes a mild and robust double hydroarylation strategy for the synthesis of symmetrical /unsymmetrical diaryl- and triarylmethanes in excellent yields using Lambert salt (0.2-1.0 mol%). Despite the anticipated challenges associated with controlling selective product formation, unsymmetrical diaryl- and triarylmethanes products are obtained unprecedentedly. A highly efficient gram scale reaction has also been reported (TON for symmetrical product=475 and for unsymmetrical product=390). The synthetic utility of the methodology is demonstrated by the preparation of several unexplored diaryl- and triarylmethane-based biologically relevant molecules, such as arundine, vibrindole A, turbomycin B, and certain anti-inflammatory agents. A total synthesis of an anti-breast-cancer agent is also demonstrated. Control experiments, Hammett analysis, HRMS and GC-MS studies reveal the reaction intermediates and reaction mechanism.
Collapse
Affiliation(s)
- Sanjay Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Rina Mahato
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Pragya Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Naveen Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Nagaraju Vodnala
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Chinmoy Kumar Hazra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|