1
|
Chang YT, Bai R, Hsia YT, Karmakar I, Badsara SS, Lee S, Lee CF. Palladium-catalyzed reductive cross-coupling reaction of carboxylic acids with thiols: an alternative strategy to access thioesters. Org Biomol Chem 2025; 23:4487-4496. [PMID: 40223779 DOI: 10.1039/d5ob00151j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
A practical and alternative approach to access thioesters is presented, utilizing readily available starting precursors such as carboxylic acids and thiols via direct reductive C-S cross-coupling reactions under palladium catalysis. The present protocol features good atom economy, excellent yields, wide functional group tolerance, broad substrate scope, operational simplicity, and mild reaction conditions with no additional steps.
Collapse
Affiliation(s)
- Yen-Ting Chang
- Department of Chemistry, National Chung Hsing University, Taichung City 402, Taiwan, Republic of China.
| | - Rekha Bai
- Department of Chemistry, National Chung Hsing University, Taichung City 402, Taiwan, Republic of China.
| | - Yang-Ting Hsia
- Department of Chemistry, National Chung Hsing University, Taichung City 402, Taiwan, Republic of China.
| | - Indrajit Karmakar
- Department of Chemistry, National Chung Hsing University, Taichung City 402, Taiwan, Republic of China.
| | - Satpal Singh Badsara
- MFOS Laboratory, Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Chin-Fa Lee
- Department of Chemistry, National Chung Hsing University, Taichung City 402, Taiwan, Republic of China.
- i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung City 402, Taiwan, Republic of China
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung City 402, Taiwan, Republic of China
| |
Collapse
|
2
|
Pal A, Sarkar S, Shibu A, Maity P, Sahoo B. Photocatalytic C-C bond thio(seleno)esterification of 1,2-diketone-derived pro-aromatic intermediates. Chem Commun (Camb) 2025; 61:4714-4717. [PMID: 40018890 DOI: 10.1039/d4cc06735e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
We report an organophotocatalyst-enabled oxidant-free C-S/C-Se bond coupling of (un)symmetrical 1,2-diketones via pro-aromatic dihydroquinazolinones/benzothiazolines, employing readily accessible disulfides/diselenides. In this scalable and redox-neutral method, various dialkyl, di(hetero)aryl, and alkyl-aryl 1,2-diketones are expediently converted to S-aryl (S-alkyl) alkyl/(hetero)aryl thioesters and Se-alkyl aryl selenoesters with broad functional group compatibility in high efficiency.
Collapse
Affiliation(s)
- Amit Pal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India.
| | - Sudip Sarkar
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India.
| | - Aaron Shibu
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India.
| | - Prakash Maity
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India.
| | - Basudev Sahoo
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India.
| |
Collapse
|
3
|
Jati A, Chanda D, Maji B. Effect of π-Linkages in Covalent Organic Framework-Catalyzed Light-Harvesting Thioesterification Reaction. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39992883 DOI: 10.1021/acsami.4c22195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Covalent organic frameworks (COFs) serve as an outstanding platform for heterogeneous photocatalysis. We synthesized two analogous pyrene-based two-dimensional COFs with π-conjugated networks, one linked by C═N bonds and the other by C═C bonds, through Schiff base and Knoevenagel condensation reactions, respectively. We investigated the impact of these linkages on the photocatalytic activity of these COFs, using visible-light-mediated thioesterification as a model reaction. It was found that the olefin-linkage COF outperformed the imine-linkage COF as a photocatalyst. The developed protocol demonstrated a broad substrate scope, including 35 diverse carboxylic acids, 14 drug molecules, and several disulfide coupling partners, achieving up to a 95% yield of thioesters. The practical utility of this strategy is further demonstrated by its successful application in gram-scale reactions. The photocatalyst is robust and was successfully reused for multiple cycles without any loss of catalytic activity. The COF backbone facilitated enhanced electron transfer upon light irradiation, enabling the cross-coupling of carboxylic acid and disulfide through a reductive photocatalytic cycle.
Collapse
Affiliation(s)
- Ayan Jati
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Durba Chanda
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
4
|
Akulov AA, Silaeva AI, Varaksin MV, Butorin II, Lyapustin DN, Drokin RA, Kotovskaya SK, Zaykovskaya AV, Pyankov OV, Rusinov VL, Charushin VN, Chupakhin ON. Azolopyrimidine-Based Thioethers: Synthesis via Cross-Dehydrogenative C-S Coupling and In Silico Evaluation of Anti-SARS-CoV-2 Activity. Chempluschem 2025; 90:e202400594. [PMID: 39607271 DOI: 10.1002/cplu.202400594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
Azoloazine derivatives are known as promising small molecules that are potentially able to counteract a broad spectrum of RNA viruses including SARS-CoV-2. However, a pool of synthetic pathways to provide convenient structural modification of such compounds without de novo construction of the heterocyclic scaffold is rather limited so far. This work proposes an approach to the direct C(sp2)-H functionalization of azolopyrimidine substrates with aromatic thiol residues, mediated by the iodine/persulfate reagent system. The reported herein sulfenylation protocol has afforded a series of previously undescribed azolopyrimidine-based thioethers obtained in yields of up to 87 %. Applicability of the approach to the selenium-centered synthons has been demonstrated as well. Besides, the in silico study with regard to the achieved cross-coupling products has suggested the possible affinity to the SARS-CoV-2 main protease (Mpro), as follows from the conducted pharmacophore search and the molecular docking experiments. As a result, the developed synthetic transformation is expected to be of utility in the design of novel antiviral agents based on small azaheterocyclic molecules.
Collapse
Affiliation(s)
- Alexey A Akulov
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620062, Ekaterinburg, Russian Federation
| | - Anastasia I Silaeva
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620062, Ekaterinburg, Russian Federation
| | - Mikhail V Varaksin
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620062, Ekaterinburg, Russian Federation
- Postovsky Institute of Organic Synthesis, 22 S. Kovalevskoy Str., 620991, Ekaterinburg, Russian Federation
| | - Ilya I Butorin
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620062, Ekaterinburg, Russian Federation
| | - Daniil N Lyapustin
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620062, Ekaterinburg, Russian Federation
| | - Roman A Drokin
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620062, Ekaterinburg, Russian Federation
| | - Svetlana K Kotovskaya
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620062, Ekaterinburg, Russian Federation
- Postovsky Institute of Organic Synthesis, 22 S. Kovalevskoy Str., 620991, Ekaterinburg, Russian Federation
| | - Anna V Zaykovskaya
- State Research Center of Virology and Biotechnology VECTOR, 630559, Koltsovo, Russian Federation
| | - Oleg V Pyankov
- State Research Center of Virology and Biotechnology VECTOR, 630559, Koltsovo, Russian Federation
| | - Vladimir L Rusinov
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620062, Ekaterinburg, Russian Federation
- Postovsky Institute of Organic Synthesis, 22 S. Kovalevskoy Str., 620991, Ekaterinburg, Russian Federation
| | - Valery N Charushin
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620062, Ekaterinburg, Russian Federation
- Postovsky Institute of Organic Synthesis, 22 S. Kovalevskoy Str., 620991, Ekaterinburg, Russian Federation
| | - Oleg N Chupakhin
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620062, Ekaterinburg, Russian Federation
- Postovsky Institute of Organic Synthesis, 22 S. Kovalevskoy Str., 620991, Ekaterinburg, Russian Federation
| |
Collapse
|
5
|
Bera B, Goswami U, Sk S, Bera MK. Carbonyldiimidazole (CDI) promoted direct and instantaneous thio-esterification of a carboxylic acid and thiol at ambient temperature. Org Biomol Chem 2024; 22:8570-8574. [PMID: 39360772 DOI: 10.1039/d4ob01376j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
A simple yet efficient method is disclosed for the synthesis of a diverse range of thioester derivatives. Carbonyldiimidazole promoted esterification between a carboxylic acid and thiol was carried out at ambient temperature. The short reaction time, excellent yield, operational ease and wide functional group tolerance are the notable features of the reaction. Furthermore, the precise preparation of thioesters on a gram scale suggests the promising prospects for its industrial application.
Collapse
Affiliation(s)
- Biman Bera
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, P O-Botanic Garden, Howrah-711103, WB, India
| | - Upasi Goswami
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, P O-Botanic Garden, Howrah-711103, WB, India
| | - Sujan Sk
- Department of Chemistry, University of Kalyani, Kalyani-741235, WB, India
| | - Mrinal K Bera
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, P O-Botanic Garden, Howrah-711103, WB, India
| |
Collapse
|
6
|
Wang MC, Yang XY, Zhou JF, Zhang WX, Li BJ. Pyridine-borane complex-catalysed thioesterification: the direct conversion of carboxylic acids to thioesters. Chem Commun (Camb) 2024; 60:6671-6674. [PMID: 38860640 DOI: 10.1039/d4cc01326c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Thioesters are a common class of biologically active fragments and synthetically useful building blocks. An attractive synthetic approach would be to use simple and bench-stable carboxylic acids as a coupling partner. Herein, we present a 4-bromo pyridine-borane complex as a catalyst for the direct coupling of carboxylic acids with thiols. A wide range of thioesters with good functional group compatibility could be prepared via this metal-free approach. The merit of this strategy is exemplified by the modification of carboxylic acid-containing drugs.
Collapse
Affiliation(s)
- Ming-Chuan Wang
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China.
| | - Xue-Ying Yang
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China.
| | - Jian-Feng Zhou
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China.
| | - Wan-Xuan Zhang
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China.
| | - Bin-Jie Li
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China.
| |
Collapse
|
7
|
Fu Y, Liang H, Lu Y, Huang S. Photoredox-Enabled Deconstructive [5 + 1] Annulation Approach to Isoquinolones from Indanones in Water. Org Lett 2024; 26:3043-3047. [PMID: 38578846 DOI: 10.1021/acs.orglett.4c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
We disclose a deconstructive [5 + 1] annulation protocol for the synthesis of isoquinolones through a nitrogen insertion into abundant indanones. This method exploits photoredox-catalyzed ring-opening of oxime esters. The reaction proceeds smoothly with water as the reaction medium and tolerates a range of functional groups on diverse thiophenols, amines, or indanones. Moreover, the representative isoquinolones exhibit promising antifungal activities.
Collapse
Affiliation(s)
- Yuanyuan Fu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Hui Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yanju Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
8
|
Rani P, Chahal S, Singh R, Sindhu J. Pushing Boundaries: What's Next in Metal-Free C-H Functionalization for Sulfenylation? Top Curr Chem (Cham) 2024; 382:13. [PMID: 38607428 DOI: 10.1007/s41061-024-00460-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/15/2024] [Indexed: 04/13/2024]
Abstract
The synthesis of thioether derivatives has been explored widely due to the potential application of these derivatives in medicinal chemistry, pharmaceutical industry and material chemistry. Within this context, there has been an increasing demand for the environmentally benign construction of C-S bonds via C-H functionalization under metal-free conditions. In the present article, we highlight recent developments in metal-free sulfenylation that have occurred in the past three years. The synthesis of organosulfur compounds via a metal-free approach using a variety of sulfur sources, including thiophenols, disulfides, sulfonyl hydrazides, sulfonyl chlorides, elemental sulfur and sulfinates, is discussed. Non-conventional strategies, which refer to the development of thioether derivatives under visible light and electrochemically mediated conditions, are also discussed. The key advantages of the reviewed methodologies include broad substrate scope and high reaction yields under environmentally benign conditions. This comprehensive review will provide chemists with a synthetic tool that will facilitate further development in this field.
Collapse
Affiliation(s)
- Payal Rani
- Department of Chemistry, College of Basic Sciences & Humanities, Chaudhary Charan Singh Haryana Agricultural University (CCS HAU), Hisar, Haryana, 125004, India
| | - Sandhya Chahal
- Department of Chemistry, College of Basic Sciences & Humanities, Chaudhary Charan Singh Haryana Agricultural University (CCS HAU), Hisar, Haryana, 125004, India
| | - Rajvir Singh
- Department of Chemistry, College of Basic Sciences & Humanities, Chaudhary Charan Singh Haryana Agricultural University (CCS HAU), Hisar, Haryana, 125004, India
| | - Jayant Sindhu
- Department of Chemistry, College of Basic Sciences & Humanities, Chaudhary Charan Singh Haryana Agricultural University (CCS HAU), Hisar, Haryana, 125004, India.
| |
Collapse
|
9
|
Ismaeel N, Imran S, Zhu X, Chen J, Yuan D, Yao Y. Rare Earth Amide-Catalyzed Direct Thioesterification of Aldehydes with Thiols under Mild Conditions. Org Lett 2023. [PMID: 37991481 DOI: 10.1021/acs.orglett.3c03497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Direct thioesterification of aldehydes with thiols catalyzed by readily accessible rare earth/lithium amide RE[N(SiMe3)2]3(μ-Cl)Li(THF)3 is developed, which enables the preparation of a range of thioesters (31 examples) under room temperature and solvent-free conditions, without using any additive or external oxidant. This method provides a straightforward and atom-efficient approach for the thioester synthesis.
Collapse
Affiliation(s)
- Nadia Ismaeel
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
| | - Sajid Imran
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
| | - Xuehua Zhu
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Jue Chen
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
| | - Dan Yuan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
| | - Yingming Yao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
10
|
Roy VJ, Dagar N, Choudhury S, Raha Roy S. Unified Approach to Diverse Heterocyclic Synthesis: Organo-Photocatalyzed Carboacylation of Alkenes and Alkynes from Feedstock Aldehydes and Alcohols. J Org Chem 2023; 88:15374-15388. [PMID: 37871233 DOI: 10.1021/acs.joc.3c01884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
We report an organo-photocatalyzed carboacylation reaction that offers a springboard to create chemical complexity in a diversity-driven approach. The modular one-pot method uses feedstock aldehydes and alcohols as acyl surrogates and commercially available Eosin Y as the photoredox catalyst, making it simple and affordable to introduce structural diversity. Several biologically relevant skeletons have been easily synthesized under mild conditions in the presence of visible light irradiation by fostering a radical acylation/cyclization cascade. The proposed reaction mechanism was further illuminated by a number of spectroscopic studies. Furthermore, we applied this protocol for the late-stage functionalization of pharmaceuticals and blockbuster drugs.
Collapse
Affiliation(s)
- Vishal Jyoti Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neha Dagar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Swagata Choudhury
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
11
|
Chai TJ, Chiou XS, Lin NX, Kuo YT, Lin CK. In situ generation of acyloxyphosphoniums for mild and efficient synthesis of thioesters. Org Biomol Chem 2023; 21:7541-7545. [PMID: 37676265 DOI: 10.1039/d3ob01318a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
We present a novel approach for in situ generation of acyloxyphosphoniums by premixing iodobenzene dicarboxylates and triphenylphosphine, resulting in efficient thioester synthesis (up to 100% yield). Stable solid iodobenzene dicarboxylates, achieved via carboxylate exchange, serve as hypervalent iodine precursors. The resulting acyloxyphosphoniums allow convenient one-pot thioester synthesis under mild conditions. Our method demonstrates facile acyloxyphosphonium production from iodobenzene dicarboxylates and Ph3P, enabling diverse thioester preparation. ESI-MS analysis confirms acyloxyphosphonium ion formation, pivotal in acylation. This strategy holds potential for combinatorial thioester synthesis and broader nucleophile modification applications.
Collapse
Affiliation(s)
- Te-Jung Chai
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Xin-Shun Chiou
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Nian-Xuan Lin
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Yu-Tsen Kuo
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Cheng-Kun Lin
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
12
|
Man Y, Zeng X, Xu B. Synthesis of Thioesters from Aldehydes via N-Heterocyclic Carbene (NHC) Catalyzed Radical Relay. Chemistry 2023; 29:e202203716. [PMID: 36583288 DOI: 10.1002/chem.202203716] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
We have developed an efficient N-heterocyclic carbene (NHC)-catalyzed thioesterification of aldehydes using N-thiosuccinimides as the thiolation reagent. This organocatalyzed transition involves the generation of sulfur radicals by single electron transfer of the Breslow enolate (generated from aldehyde and NHC catalyst) with N-thiosuccinimides. This method offers facile access to various highly functionalized thioesters and exhibits good chemical yields and functional group tolerance.
Collapse
Affiliation(s)
- Yunquan Man
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, 201620, Shanghai, China
| | - Xiaojun Zeng
- School of Chemistry and chemical Engineering, Nanchang University, 330031, Nanchang, Jiangxi, China
| | - Bo Xu
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, 201620, Shanghai, China
| |
Collapse
|
13
|
Sahoo AK, Rakshit A, Pan A, Dhara HN, Patel BK. Visible/solar-light-driven thiyl-radical-triggered synthesis of multi-substituted pyridines. Org Biomol Chem 2023; 21:1680-1691. [PMID: 36723155 DOI: 10.1039/d3ob00009e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A light-triggered synthesis of thio-functionalized pyridines is demonstrated using γ-ketodinitriles, thiols, and eosin Y as the photocatalyst. The reaction proceeds via the selective attack on one of the cyano groups by an in situ generated thiyl radical. The reaction also proceeds with nearly equal efficiency using direct sunlight. Large-scale synthesis and a few useful synthetic transformations of the substituted pyridines are also performed.
Collapse
Affiliation(s)
- Ashish Kumar Sahoo
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Amitava Rakshit
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Avishek Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Hirendra Nath Dhara
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| |
Collapse
|
14
|
Zhao B, Li H, Jiang F, Wan JP, Cheng K, Liu Y. Synergistic Visible Light and Pd-Catalyzed C-H Alkylation of 1-Naphthylamines with α-Diazoesters. J Org Chem 2023; 88:640-646. [PMID: 36538361 DOI: 10.1021/acs.joc.2c01702] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The combination of visible light irradiation and Pd-catalysis has been practically employed for the C-H alkylation reactions of naphthylamines and α-diazo esters, leading to the synthesis of α-naphthyl functionalized acetates via C-C bond construction under mild reaction conditions and under solvent-free conditions. The light irradiation has been proven to play a pivotal role in the reactions, probably by promoting the generation of active carbene species from α-diazo esters.
Collapse
Affiliation(s)
- Baoli Zhao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.,Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Haifeng Li
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Fengxuan Jiang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Kai Cheng
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
15
|
Singh SP, Srivastava V, Singh PK, Singh PP. Visible-light induced eosin Y catalysed C(sp2)-H alkylation of carbonyl substrates via direct HAT. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Volkov AA, Bugaenko DI, Bogdanov AV, Karchava AV. Visible-Light-Driven Thioesterification of Aryl Halides with Potassium Thiocarboxylates: Transition-Metal Catalyst-Free Incorporation of Sulfur Functionalities into an Aromatic Ring. J Org Chem 2022; 87:8170-8182. [PMID: 35653579 DOI: 10.1021/acs.joc.2c00913] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reactions of acceptor-substituted aryl iodides and bromides with potassium thiocarboxylates under white light irradiation allow for the preparation of S-aryl thioesters including synthetically versatile S-aryl thioacetates. This transition-metal and external photocatalyst-free method features extremely mild reaction conditions compared with those used in transition-metal-catalyzed protocols. Reactions proceed via the initial formation of an electron donor-acceptor (EDA) complex in the ground state, which was supported by UV-vis spectra. Electron paramagnetic resonance (EPR) spin-trapping experiments using phenyl-N-tert-butylnitrone (PBN) have revealed the radical nature of the reaction.
Collapse
Affiliation(s)
- Alexey A Volkov
- Department of Chemistry, Moscow State University, Moscow 119234, Russia
| | - Dmitry I Bugaenko
- Department of Chemistry, Moscow State University, Moscow 119234, Russia
| | - Alexey V Bogdanov
- Department of Chemistry, Moscow State University, Moscow 119234, Russia
| | | |
Collapse
|
17
|
Wang X, Dong ZB. A Recent Progress for the Synthesis of Thioester Compounds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xi Wang
- Wuhan Institute of Technology School of Chemistry and Environmental Engineering 430205 Wuhan CHINA
| | - Zhi-Bing Dong
- Wuhan Institute of Technology School of Chemistry and Environmental Engeering Liufang Campus, No. 206, Guanggu 1st Road 430205 Wuhan CHINA
| |
Collapse
|
18
|
Sahoo AK, Rakshit A, Dahiya A, Pan A, Patel BK. Visible-Light-Mediated Synthesis of Thio-Functionalized Pyrroles. Org Lett 2022; 24:1918-1923. [DOI: 10.1021/acs.orglett.2c00283] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ashish Kumar Sahoo
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Amitava Rakshit
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Anjali Dahiya
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Avishek Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Bhisma K. Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| |
Collapse
|
19
|
Roy VJ, Sen PP, Roy SR. Exploring Eosin Y as a bimodular catalyst: organophotoacid mediated Minisci-type acylation of N-heteroarenes. Chem Commun (Camb) 2022; 58:1776-1779. [PMID: 35037922 DOI: 10.1039/d1cc06483e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report Eosin Y as a bimodular catalyst for Minisci-type acylation reactions. The formation of organic exciplexes between photoexcited Eosin Y and N-heteroarenes was found to be a stabilizing factor for photoacid catalysis under optimized conditions. Spectroscopic investigations such as steady state fluorescence quenching and dynamic lifetime quenching experiments were employed to better understand the role of Eosin Y as both a photoredox catalyst and a photoacid. Feedstock aldehydes were employed as acyl radical precursors for engaging in C-C bond formation reactions with a variety of nitrogen containing heterocycles.
Collapse
Affiliation(s)
- Vishal Jyoti Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Partha Pratim Sen
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|