1
|
Zheng Y, Liu Z, Huang Q, Xie Y. Ipso-Nitration of Boronic Esters Enabled by Ferric Nitrate Nonahydrate (Fe(NO 3) 3·9H 2O) in HFIP. Org Lett 2025; 27:2997-3002. [PMID: 40079791 DOI: 10.1021/acs.orglett.5c00635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
We describe in this work an operationally facile and generally applicable ipso-nitration of boronic esters by Fe(NO3)3·9H2O in hexafluoroisopropanol (HFIP), allowing us fast access to various nitroarenes that are currently difficult to obtain via traditional electrophilic C-H nitrations. In contrast to previous deborylative ipso-nitrations, this new protocol utilized less reactive and more stable organoboron reagents and therefore had significantly improved substrate scope and functional group tolerance, which was exemplified in the late-stage ipso-nitration of various natural products, pharmaceuticals, and biologically active molecules.
Collapse
Affiliation(s)
- Yuzhu Zheng
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Zongyi Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Qing Huang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Youwei Xie
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
2
|
Liang Y, Ma Y, Zhou W, Cui Y, Szostak M, Liu C. Samarium diiodide/samarium-mediated direct deoxygenative hydroborylation of ketones with hydroborane esters. Org Biomol Chem 2024; 22:7956-7960. [PMID: 39258992 DOI: 10.1039/d4ob01287a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
A direct deoxygenative hydroborylation of ketones with hydroborane ester promoted by a combination of samarium diiodide, samarium and nickel has been developed. In this method, secondary alkyl borate esters are synthesized from unactivated ketones with hydroborane esters in one step. A broad substrate scope and excellent selectivity toward CO cleavage has been demonstrated. This approach represents a general method for the construction of versatile secondary alkyl borate esters from unactivated ketones.
Collapse
Affiliation(s)
- Yongqi Liang
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Yilin Ma
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Wei Zhou
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Yongmei Cui
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA.
| | - Chengwei Liu
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
3
|
Ji H, Ma Y, Zhang J, Xing F, Liu C. Palladium-catalyzed Suzuki-Miyaura cross-coupling of carboxylic-phosphoric anhydrides via C-O bond cleavage. Org Biomol Chem 2024; 22:5578-5584. [PMID: 38895804 DOI: 10.1039/d4ob00548a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A robust palladium-catalyzed Suzuki-Miyaura reaction of carboxylic-phosphoric anhydrides via highly selective C(O)-O bond cleavage under inorganic base-free conditions has been reported. Carboxylic-phosphoric anhydrides, generated through activating carboxylic acids using phosphates by esterification or direct dehydrogenative reaction with phosphites, have been employed as highly reactive electrophiles for Suzuki-Miyaura cross-coupling reactions. Broad substrate scope and excellent functional group tolerance have been demonstrated to be a general and practical approach for the synthesis of highly valuable ketones.
Collapse
Affiliation(s)
- Haiyao Ji
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Yilin Ma
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Jianwen Zhang
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Feifei Xing
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Chengwei Liu
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
4
|
Nagy B, Gonda Z, Földesi T, Fehér PP, Stirling A, Tolnai GL, Novák Z. Photoinduced Decarboxylative Borylation of N-Hydroxyphthalimide Esters with Hypoboric Acid. Org Lett 2024; 26:2292-2296. [PMID: 38477500 DOI: 10.1021/acs.orglett.4c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
We developed a visible-light-driven photochemical transformation in which activated primary, secondary, and tertiary alkylcarboxylic acids were converted into the corresponding boronic esters in the absence of catechol and any added photocatalyst. The procedure relies on the utilization of hypoboric acid and redox-active esters of alkylcarboxylic acids to ensure a simple and economic procedure. Quantum chemical calculations and mechanistic considerations provide deeper insights into the mechanism of photochemical borylation reactions.
Collapse
Affiliation(s)
- Bálint Nagy
- MTA-ELTE "Lendület" Catalysis and Organic Synthesis Research Group, Eötvös Loránd University, Institute of Chemistry, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary
| | - Zsombor Gonda
- MTA-ELTE "Lendület" Catalysis and Organic Synthesis Research Group, Eötvös Loránd University, Institute of Chemistry, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary
- ELTE Novel Scaffolds Research Group, Eötvös Loránd University, Institute of Chemistry, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary
| | - Tamás Földesi
- MTA-ELTE "Lendület" Catalysis and Organic Synthesis Research Group, Eötvös Loránd University, Institute of Chemistry, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary
| | - Péter Pál Fehér
- Research Centre for Natural Sciences, HUN-REN, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary
| | - András Stirling
- Research Centre for Natural Sciences, HUN-REN, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary
- Department of Chemistry, Eszterházy Károly Catholic University, Leányka u. 6, H-3300 Eger, Hungary
| | - Gergely L Tolnai
- ELTE Novel Scaffolds Research Group, Eötvös Loránd University, Institute of Chemistry, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary
| | - Zoltán Novák
- MTA-ELTE "Lendület" Catalysis and Organic Synthesis Research Group, Eötvös Loránd University, Institute of Chemistry, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary
| |
Collapse
|
5
|
Li K, Li R, Cui Y, Liu C. Decarbonylative borylation of aryl anhydrides via rhodium catalysis. Org Biomol Chem 2024; 22:1693-1698. [PMID: 38305759 DOI: 10.1039/d3ob01949g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Decarbonylative borylation of aryl anhydrides by rhodium catalysis has been reported. A base-free system with Rh(PPh3)3Cl as a catalyst enables the efficient synthesis of various arylboronate esters from readily available aryl anhydrides. The reaction involves the cleavage of C(O)-O bonds and the formation of C-B bonds. The experimental results demonstrated that compared with carboxylic acids, amides, and esters, anhydrides have higher reactivity in the decarbonylative borylation reaction under the current conditions. Furthermore, compared with the reported palladium-catalyzed borylation reaction of aryl anhydrides, the present rhodium-catalyzed method has the advantages of a shorter reaction time and a lower reaction temperature.
Collapse
Affiliation(s)
- Kexin Li
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Ruxing Li
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Yongmei Cui
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Chengwei Liu
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
6
|
Choy PY, Tse MH, Kwong FY. Recent Expedition in Pd- and Rh-Catalyzed C (Ar) -B Bond Formations and Their Applications in Modern Organic Syntheses. Chem Asian J 2023; 18:e202300649. [PMID: 37655883 DOI: 10.1002/asia.202300649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/02/2023]
Abstract
Transition metal-catalyzed borylation has emerged as a powerful and versatile strategy for synthesizing organoboron compounds. These compounds have found widespread applications in various aspects, including organic synthesis, materials science, and medicinal chemistry. This review provides a concise summary of the recent advances in palladium- and rhodium-catalyzed borylation from 2013 to 2023. The review covers the representative examples of catalysts, substrates scope and reaction conditions, with particular emphasis on the development of catalyst systems, such as phosphine ligands, NHC-carbene, and more. The diverse array of borylative products obtained for further applications in Suzuki-Miyaura coupling, and other transformations, are also discussed. Future directions in this rapidly evolving field, with the goal of designing more efficient, selective borylation methodologies are highlighted, too.
Collapse
Affiliation(s)
- Pui Ying Choy
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P. R. China
- Shenzhen Center of Novel Functional Molecules, Shenzhen Municipal Key Laboratory of Chemical Synthesis of Medicinal Organic Molecules, CUHK Shenzhen Research Institute, No. 10. Second Yuexing Road, Shenzhen, 518507, P. R. China
| | - Man Ho Tse
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P. R. China
| | - Fuk Yee Kwong
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P. R. China
- Shenzhen Center of Novel Functional Molecules, Shenzhen Municipal Key Laboratory of Chemical Synthesis of Medicinal Organic Molecules, CUHK Shenzhen Research Institute, No. 10. Second Yuexing Road, Shenzhen, 518507, P. R. China
| |
Collapse
|
7
|
Dow NW, Pedersen PS, Chen TQ, Blakemore DC, Dechert-Schmitt AM, Knauber T, MacMillan DWC. Decarboxylative Borylation and Cross-Coupling of (Hetero)aryl Acids Enabled by Copper Charge Transfer Catalysis. J Am Chem Soc 2022; 144:6163-6172. [PMID: 35377627 DOI: 10.1021/jacs.2c01630] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report a copper-catalyzed strategy for arylboronic ester synthesis that exploits photoinduced ligand-to-metal charge transfer (LMCT) to convert (hetero)aryl acids into aryl radicals amenable to ambient-temperature borylation. This near-UV process occurs under mild conditions, requires no prefunctionalization of the native acid, and operates broadly across diverse aryl, heteroaryl, and pharmaceutical substrates. We also report a one-pot procedure for decarboxylative cross-coupling that merges catalytic LMCT borylation and palladium-catalyzed Suzuki-Miyaura arylation, vinylation, or alkylation with organobromides to access a range of value-added products. The utility of these protocols is highlighted through the development of a heteroselective double-decarboxylative C(sp2)-C(sp2) coupling sequence, pairing copper-catalyzed LMCT borylation and halogenation processes of two distinct acids (including pharmaceutical substrates) with subsequent Suzuki-Miyaura cross-coupling.
Collapse
Affiliation(s)
- Nathan W Dow
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - P Scott Pedersen
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Tiffany Q Chen
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David C Blakemore
- Worldwide Research and Development, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Anne-Marie Dechert-Schmitt
- Worldwide Research and Development, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Thomas Knauber
- Worldwide Research and Development, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|