1
|
Xiao R, Lang Y, Cheng Z, Zhou L, Cao ZY, Yuan Z, Wang Y. Decatungstate-Catalyzed Hydrosilylation of α-Trifluoromethylalkenes for Construction of α-Trifluoromethyl-β-silanes. Org Lett 2025; 27:4439-4444. [PMID: 40247816 DOI: 10.1021/acs.orglett.5c00796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
The hydrosilylation of alkenes is a pivotal transformation for the synthesis of organosilanes; however, the hydrosilylation of fluorine-containing alkenes is limited due to the facile β-fluoride elimination. Herein, by employing the direct hydrogen atom transfer (HAT) catalyst, tetrabutylammonium decatungstate (TBADT), and using disulfide as a co-catalyst, we have successfully developed a mild photocatalytic hydrosilylation of α-trifluoromethylalkenes for the synthesis of α-trifluoromethyl-β-silanes. Our method features mild conditions, good regioselectivity, and compatibility. The β-fluoride elimination was fully inhibited. A radical mechanism was proposed based on the preliminary results.
Collapse
Affiliation(s)
- Rui Xiao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Yutong Lang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Ziqiang Cheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Liejin Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Zheliang Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Yanan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| |
Collapse
|
2
|
Marie N, Ma JA, Tognetti V, Cahard D. Photocatalyzed Cascade Hydrogen Atom Transfers for Assembly of Multi-Substituted α-SCF 3 and α-SCF 2H Cyclopentanones. Angew Chem Int Ed Engl 2024; 63:e202407689. [PMID: 38845586 DOI: 10.1002/anie.202407689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Indexed: 07/23/2024]
Abstract
A photocatalyzed formal (3+2) cycloaddition has been developed to construct original polysubstituted α-SCF3 cyclopentanones in a regio- and diastereoselective manner. This building block approach leverages trifluoromethylthio alkynes and branched/linear aldehydes, as readily available reaction partners, in consecutive hydrogen atom transfers and C-C bond formations. Difluoromethylthio alkynes are also compatible substrates. Furthermore, the potential for telescoped reaction starting from alcohols instead of aldehydes was demonstrated, as well as process automatization and scale-up under continuous microflow conditions. This prompted density functional theory (DFT) calculations to support a radical-mediated cascade process.
Collapse
Affiliation(s)
- Nicolas Marie
- CNRS, UMR 6014 COBRA, Univ Rouen Normandie, INSA Rouen Normandie, Normandie Univ, INC3M FR 3038, F-76000, Rouen, France
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Vincent Tognetti
- CNRS, UMR 6014 COBRA, Univ Rouen Normandie, INSA Rouen Normandie, Normandie Univ, INC3M FR 3038, F-76000, Rouen, France
| | - Dominique Cahard
- CNRS, UMR 6014 COBRA, Univ Rouen Normandie, INSA Rouen Normandie, Normandie Univ, INC3M FR 3038, F-76000, Rouen, France
| |
Collapse
|
3
|
Soudi A, Bender O, Celik I, El-Hafeez AAA, Dogan R, Atalay A, Elkaeed EB, Alsfouk AA, Abdelhafez EMN, Aly OM, Sippl W, Ali TFS. Discovery and Anticancer Screening of Novel Oxindole-Based Derivative Bearing Pyridyl Group as Potent and Selective Dual FLT3/CDK2 Kinase Inhibitor. Pharmaceuticals (Basel) 2024; 17:659. [PMID: 38794229 PMCID: PMC11124822 DOI: 10.3390/ph17050659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Protein kinases regulate cellular activities and make up over 60% of oncoproteins and proto-oncoproteins. Among these kinases, FLT3 is a member of class III receptor tyrosine kinase family which is abundantly expressed in individuals with acute leukemia. Our previous oxindole-based hit has a particular affinity toward FLT3 (IC50 = 2.49 μM) and has demonstrated selectivity towards FLT3 ITD-mutated MV4-11 AML cells, with an IC50 of 4.3 μM. By utilizing the scaffold of the previous hit, sixteen new compounds were synthesized and screened against NCI-60 human cancer cell lines. This leads to the discovery of a potent antiproliferative compound, namely 5l, with an average GI50 value against leukemia and colon cancer subpanels equalling 3.39 and 5.97 µM, respectively. Screening against a specific set of 10 kinases that are associated with carcinogenesis indicates that compound 5l has a potent FLT3 inhibition (IC50 = 36.21 ± 1.07 nM). Remarkably, compound 5l was three times more effective as a CDK2 inhibitor (IC50 = 8.17 ± 0.32 nM) compared to sunitinib (IC50 = 27.90 ± 1.80 nM). Compound 5l was further analyzed by means of docking and molecular dynamics simulation for CDK2 and FLT3 active sites which provided a rational for the observed strong inhibition of kinases. These results suggest a novel structural scaffold candidate that simultaneously inhibits CDK2 and FLT3 and gives encouragement for further development as a potential therapeutic for leukemia and colon cancer.
Collapse
Affiliation(s)
- Aya Soudi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Onur Bender
- Biotechnology Institute, Ankara University, Ankara 06135, Turkey
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle, Germany
| | - Amer Ali Abd El-Hafeez
- Pharmacology and Experimental Oncology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Rumeysa Dogan
- Biotechnology Institute, Ankara University, Ankara 06135, Turkey
| | - Arzu Atalay
- Biotechnology Institute, Ankara University, Ankara 06135, Turkey
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Aisha A. Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | | | - Omar M. Aly
- Department of Medicinal Chemistry, Faculty of Pharmacy, Port Said University, Port Said 42511, Egypt
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle, Germany
| | - Taha F. S. Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|
4
|
Dong J, Tang Z, Zou L, Zhou Y, Chen J. Visible light-induced hydrogen atom transfer trifluoromethylthiolation of aldehydes with bismuth catalyst. Chem Commun (Camb) 2024; 60:742-745. [PMID: 38116589 DOI: 10.1039/d3cc05048c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
By using a combination of BiCl3 and TBACl as a ligand-to-metal charge transfer (LMCT) photocatalyst, hydrogen atom transfer trifluoromethylthiolation of aldehydes was achieved under visible light irradiation. The present method provides economical and operationally simple access to trifluoromethylthioesters using low toxicity and cost-effective bismuth catalysts under mild reaction conditions. Based on the radical trapping experiments, the direct conversion of aldehydes to acyl radicals via chlorine radicals as HAT reagents was proposed as the reaction mechanism.
Collapse
Affiliation(s)
- Jun Dong
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Yuehua Street, Kunming, 650504, China.
| | - Zhuang Tang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Yuehua Street, Kunming, 650504, China.
| | - Luqian Zou
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Yuehua Street, Kunming, 650504, China.
| | - Yongyun Zhou
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Yuehua Street, Kunming, 650504, China.
| | - Jingchao Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Yuehua Street, Kunming, 650504, China.
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Yuehua Street, Kunming, 650504, China.
| |
Collapse
|
5
|
Yang ML, Dong CL, Guan Z, He YH. Visible Light-Induced Hydroacylation of Benzylidenemalononitriles with Aroyl Chlorides Using Silane as a Hydrogen Donor. J Org Chem 2024. [PMID: 38163337 DOI: 10.1021/acs.joc.3c02616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
A novel photoredox-catalyzed direct hydroacylation of benzylidenemalononitriles is described. In this method, aroyl chlorides are employed as a readily available and affordable source of acyl groups, while commercially available tris(trimethylsilyl)silane acts as both the hydrogen atom donor and electron donor. By eliminating the requirement for complex synthesis of acyl precursors and hydrogen atom-transfer (HAT) reagents, this approach offers a convenient and efficient strategy for the hydroacylation of benzylidenemalononitriles.
Collapse
Affiliation(s)
- Ming-Lin Yang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Chun-Lin Dong
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Taniguchi N, Hyodo M, Pan LW, Ryu I. Photocatalytic C(sp 3)-H thiolation by a double S H2 strategy using thiosulfonates. Chem Commun (Camb) 2023. [PMID: 38018244 DOI: 10.1039/d3cc05149h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Site-selective C(sp3)-H thiolation using thiosulfonates has been achieved using the decatungstate anion as a photocatalyst. Using the protocol, a variety of thiolated compounds were synthesized in good yields. The transformation consists of a cascade of double SH2 reactions, HAT and ArS group transfer, and PCET (proton-coupled electron transfer) of the leaving arylsulfonyl radical to arylsulfinic acid thus allowing the catalyst, W10O324-, to be recovered.
Collapse
Affiliation(s)
- Nobukazu Taniguchi
- Faculty of Liberal Arts, Sciences and Global Education, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan.
| | - Mamoru Hyodo
- Institute for Research Promotion, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan.
| | - Lin-Wei Pan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
| | - Ilhyong Ryu
- Institute for Research Promotion, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan.
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
| |
Collapse
|
7
|
Yuan Z, Britton R. Development and application of decatungstate catalyzed C-H 18F- and 19F-fluorination, fluoroalkylation and beyond. Chem Sci 2023; 14:12883-12897. [PMID: 38023504 PMCID: PMC10664588 DOI: 10.1039/d3sc04027e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Over the past few decades, photocatalytic C-H functionalization reactions have received increasing attention due to the often mild reaction conditions and complementary selectivities to conventional functionalization processes. Now, photocatalytic C-H functionalization is a widely employed tool, supporting activities ranging from complex molecule synthesis to late-stage structure-activity relationship studies. In this perspective, we will discuss our efforts in developing a photocatalytic decatungstate catalyzed C-H fluorination reaction as well as its practical application realized through collaborations with industry partners at Hoffmann-La Roche and Merck, and extension to radiofluorination with radiopharmaceutical chemists and imaging experts at TRIUMF and the BC Cancer Agency. Importantly, we feel that our efforts address a question of utility posed by Professor Tobias Ritter in "Late-Stage Fluorination: Fancy Novelty or Useful Tool?" (ACIE, 2015, 54, 3216). In addition, we will discuss decatungstate catalyzed C-H fluoroalkylation and the interesting electrostatic effects observed in decatungstate-catalyzed C-H functionalization. We hope this perspective will inspire other researchers to explore the use of decatungstate for the purposes of photocatalytic C-H functionalization and further advance the exploitation of electrostatic effects for both rate acceleration and directing effects in these reactions.
Collapse
Affiliation(s)
- Zheliang Yuan
- Department of Chemistry, Simon Fraser University Burnaby British Columbia V5A 1S2 Canada
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University Jinhua Zhejiang 321004 China
| | - Robert Britton
- Department of Chemistry, Simon Fraser University Burnaby British Columbia V5A 1S2 Canada
| |
Collapse
|
8
|
Uppalabat T, Hassa N, Sawektreeratana N, Leowanawat P, Janthakit P, Nalaoh P, Promarak V, Soorukram D, Reutrakul V, Kuhakarn C. Cascade Oxidative Trifluoromethylthiolation and Cyclization of 3-Alkyl-1-(2-(alkynyl)phenyl)indoles. J Org Chem 2023; 88:5403-5419. [PMID: 37019432 DOI: 10.1021/acs.joc.2c03045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Persulfate-promoted radical cascade trifluoromethylthiolation and cyclization of 3-alkyl-1-(2-(alkynyl)phenyl)indoles with AgSCF3 were investigated. This protocol provides a novel route to CF3S-substituted indolo[1,2-a]quinoline-7-carbaldehydes and CF3S-substituted indolo[1,2-a]quinoline-7-methanone derivatives via the formation of the C-SCF3 bond and C-C bond and benzylic carbon oxidation in a single step. This reaction can accommodate a broad range of functional groups. The single-crystal X-ray diffraction data confirm the chemical structure of the product. A scale-up experiment and radical inhibition experiments were operated in the reaction system. Photophysical properties of some selected 5-((trifluoromethyl)thio)indolo[1,2-a]quinoline-7-carbaldehydes were studied by UV-visible and fluorescence spectroscopy.
Collapse
Affiliation(s)
- Thikhamporn Uppalabat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Nattawoot Hassa
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Natthapat Sawektreeratana
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Pawaret Leowanawat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Pattarapapa Janthakit
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Phattananawee Nalaoh
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Vinich Promarak
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Darunee Soorukram
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Vichai Reutrakul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Chutima Kuhakarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| |
Collapse
|
9
|
Bao Y, Tang M, Wang Q, Cao ZY, Wang Y, Yuan Z. Visible-Light-Induced Monofluoroalkenylation and gem-Difluoroallylation of Inactivated C(sp 3)-H Bonds via 1,5-Hydrogen Atom Transfer (HAT). J Org Chem 2023; 88:3883-3896. [PMID: 36880346 DOI: 10.1021/acs.joc.3c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The direct monofluoroalkenylation of C(sp3)-H bonds is of great importance and quite challenging. Current methods have been restricted to the monofluoroalkenylation of activated C(sp3)-H bonds. Here, we reported the photocatalyzed C(sp3)-H monofluoroalkenylation of inactivated C(sp3)-H bonds with gem-difluoroalkenes via 1,5-hydrogen atom transfer. This process shows good functional group tolerance, such as halides (F, Cl), nitrile, sulfone, ester, and pyridine, and good γ-selectivity. Moreover, this method succeeds in the photocatalyzed gem-difluoroallylation of inactivated C(sp3)-H with α-trifluoromethyl alkenes.
Collapse
Affiliation(s)
- Yanyang Bao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Meifang Tang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Qing Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Yanan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Zheliang Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| |
Collapse
|
10
|
Shen Q. A Toolbox of Reagents for Trifluoromethylthiolation: From Serendipitous Findings to Rational Design. J Org Chem 2023; 88:3359-3371. [PMID: 36795864 DOI: 10.1021/acs.joc.2c02777] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Two types of electrophilic trifluoromethylthiolating reagents were developed in the past 10 years in our laboratory. The development of the first type of reagent, trifluoromethanesulfenate I, which is highly reactive toward a variety of nucleophiles, was based on an unexpected discovery in the initial design for the development of an electrophilic trifluoromethylthiolating reagent with a hypervalent iodine skeleton. A structure-activity study disclosed that α-cumyl trifluoromethanesulfenate (reagent II) without the iodo substituent is equally effective. Subsequent derivatization let us develop an α-cumyl bromodifluoromethanesulfenate III that could be used for the preparation of [18F]ArSCF3. To remediate the low reactivity of the type I electrophilic trifluoromethylthiolating reagent for Friedel-Crafts trifluoromethylthiolation of electron-rich (hetero)arenes, we designed and prepared N-trifluoromethylthiosaccharin IV, which exhibits broad reactivity toward various nucleophiles, including electron-rich arenes. A comparison of the structure of N-trifluoromethylthiosaccharin IV with that of N-trifluoromethylthiophthalimide showed that the replacement of one carbonyl group in N-trifluoromethylthiophthalimide with a sulfonyl group made N-trifluoromethylthiosaccharin IV much more electrophilic. Thus, the replacement of both carbonyls with two sulfonyl groups would further increase the electrophilicity. Such a rationale prompted us to design and develop the current most electrophilic trifluoromethylthiolating reagent, N-trifluoromethylthiodibenzenesulfonimide V, and its reactivity was much higher than that of N-trifluoromethylthiosaccharin IV. We further developed an optically pure electrophilic trifluoromethylthiolating reagent, (1S)-(-)-N-trifluoromethylthio-2,10-camphorsultam VI, for the preparation of optically active trifluoromethylthio-substituted carbon stereogenic centers. Reagents I-VI now constitute a powerful toolbox for the introduction of the trifluoromethylthio group into the target molecules.
Collapse
Affiliation(s)
- Qilong Shen
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
11
|
Mao Y, Fan P, Wang C. Photocatalyzed Formal All-Carbon [3+2] Cycloaddition of Aromatic Aldehydes with Arylethynyl Silanes. Org Lett 2022; 24:9413-9418. [PMID: 36534612 DOI: 10.1021/acs.orglett.2c03807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Herein, we report a photoinduced TBADT-catalyzed formal all-carbon [3+2] cycloaddition of aromatic aldehydes and arylethynyl silanes, which combines acyl C-H and ortho C-H activation of aromatic aldehydes, offering a new method for constructing the indanone scaffold under mild conditions. By choosing an appropriate silane as the precursor, one can selectively retain or remove the α-silyl group of the indanone products during the reaction. Preliminary mechanistic studies point to a reaction mechanism involving a 1,5-H shift as a key step.
Collapse
Affiliation(s)
- Yujia Mao
- Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| | - Pei Fan
- Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China.,School of Chemical and Materials Engineering, Anhui Province Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan, Anhui 232038, P. R. China
| | - Chuan Wang
- Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
12
|
Wang R, Fan P, Wang C. Nickel/Photo-Cocatalyzed Asymmetric Acyl C–H Allylation of Aldehydes and Formamides. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rui Wang
- Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Hefei, Anhui 230026, People’s Republic of China
| | - Pei Fan
- Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Hefei, Anhui 230026, People’s Republic of China
- School of Chemical and Materials Engineering, Anhui Province Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan, Anhui 232038, People’s Republic of China
| | - Chuan Wang
- Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Hefei, Anhui 230026, People’s Republic of China
| |
Collapse
|
13
|
Varlet T, Bouchet D, Van Elslande E, Masson G. Decatungstate‐Photocatalyzed Dearomative Hydroacylation of Indoles: Direct Synthesis of 2‐Acylindolines. Chemistry 2022; 28:e202201707. [DOI: 10.1002/chem.202201707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Thomas Varlet
- Institut de Chimie des Substances Naturelles (ICSN) CNRS University Paris-Saclay 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Damien Bouchet
- Institut de Chimie des Substances Naturelles (ICSN) CNRS University Paris-Saclay 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Elsa Van Elslande
- Institut de Chimie des Substances Naturelles (ICSN) CNRS University Paris-Saclay 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles (ICSN) CNRS University Paris-Saclay 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
- HitCat Seqens-CNRS joint laboratory Seqens'Lab 8 Rue de Rouen 78440 Porcheville France
| |
Collapse
|
14
|
Wang Q, Yue L, Bao Y, Wang Y, Kang D, Gao Y, Yuan Z. Oxalates as Activating Groups for Tertiary Alcohols in Photoredox-Catalyzed gem-Difluoroallylation To Construct All-Carbon Quaternary Centers. J Org Chem 2022; 87:8237-8247. [PMID: 35612278 DOI: 10.1021/acs.joc.2c00664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Construction of challenging and important all-carbon quaternary centers has received growing attention. Herein, with oxalates as activating groups for tertiary alcohols, we report photoredox-catalyzed gem-difluoroallylation to construct all-carbon quaternary centers enabled by efficient tertiary radical addition to α-trifluoromethyl alkenes. This transformation shows good functional group tolerance for both α-trifluoromethyl alkenes and oxalates. Moreover, this strategy is also successfully applied to the synthesis of monofluoralkenes from the corresponding electron-rich gem-difluoroalkenes and cesium tertiary alkyl oxalates under modified conditions.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Ling Yue
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Yanyang Bao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Yanan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Danni Kang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Yan Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Zheliang Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| |
Collapse
|
15
|
Li X, Mao Y, Fan P, Wang C. Nickel/Photo‐Cocatalyzed Acyl C−H Benzylation of Aldehydes with Benzyl Chlorides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Yujia Mao
- University of Science and Technology of China Chemistry CHINA
| | - Pei Fan
- Huainan Normal University Chemistry CHINA
| | - Chuan Wang
- University of Science and Technology of China Chemistry 96 Jinzhai Road 230026 Hefei CHINA
| |
Collapse
|
16
|
Meng D, Lyu Y, Ni C, Zhou M, Li Y, Hu J. S
‐(Trifluoromethyl)Benzothioate (TFBT): A KF‐Based Reagent for Nucleophilic Trifluoromethylthiolation. Chemistry 2022; 28:e202104395. [DOI: 10.1002/chem.202104395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Indexed: 11/12/2022]
Affiliation(s)
- Depei Meng
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Yichong Lyu
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Min Zhou
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Yang Li
- School of Chemistry and Chemical Engineering Chongqing University Chongqing 400030 P. R. China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| |
Collapse
|
17
|
Fan P, Mao Y, Wang C. Synthesis of 1,4-diketones via palladium/photo-cocatalyzed dehydrogenative cross-coupling. Org Chem Front 2022. [DOI: 10.1039/d2qo00935h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report a palladium/TBADT-cocatalyzed dehydrogenative cross-coupling reaction, enabling the synthesis of a variety of 1,4-diketones starting from simple allylic alcohols and aldehydes as the precursors under mild reaction conditions.
Collapse
Affiliation(s)
- Pei Fan
- School of Chemistry and Materials Engineering, Anhui Province Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan, Anhui 232038, P. R. China
- Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yujia Mao
- Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuan Wang
- Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|