1
|
Cao XY, Li X, Wang F, Duan Y, Wu X, Lin GQ, Geng M, Huang M, Tian P, Tang S, Gao D. Identification of benzo[b]thiophene-1,1-dioxide derivatives as novel PHGDH covalent inhibitors. Bioorg Chem 2024; 146:107330. [PMID: 38579615 DOI: 10.1016/j.bioorg.2024.107330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
The increased de novo serine biosynthesis confers many advantages for tumorigenesis and metastasis. Phosphoglycerate dehydrogenase (PHGDH), a rate-limiting enzyme in serine biogenesis, exhibits hyperactivity across multiple tumors and emerges as a promising target for cancer treatment. Through screening our in-house compound library, we identified compound Stattic as a potent PHGDH inhibitor (IC50 = 1.98 ± 0.66 µM). Subsequent exploration in structural activity relationships led to the discovery of compound B12 that demonstrated the increased enzymatic inhibitory activity (IC50 = 0.29 ± 0.02 μM). Furthermore, B12 exhibited robust inhibitory effects on the proliferation of MDA-MB-468, NCI-H1975, HT1080 and PC9 cells that overexpress PHGDH. Additionally, using a [U-13C6]-glucose tracing assay, B12 was found to reduce the production of glucose-derived serine in MDA-MB-468 cells. Finally, mass spectrometry-based peptide profiling, mutagenesis experiment and molecular docking study collectively suggested that B12 formed a covalent bond with Cys421 of PHGDH.
Collapse
Affiliation(s)
- Xin-Yu Cao
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine,Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinge Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Feng Wang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine,Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yichen Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xingmei Wu
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine,Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine,Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Meiyu Geng
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264100, China
| | - Min Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264100, China
| | - Ping Tian
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine,Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Shuai Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264100, China.
| | - Dingding Gao
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine,Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Freeman EE, Jackson R, Luo J, Somwaru R, Sons AA, Bean A, Buckle RN, Herr RJ. A Three-Step Method for the Preparation of N-Substituted 3,4-Dihydroisoquinolin-1(2 H)-ones and Heteroaryl-Fused 3,4-Dihydropyridin-2(1 H)-ones from 2-Bromobenzoate Precursors. J Org Chem 2023; 88:2589-2598. [PMID: 36706424 DOI: 10.1021/acs.joc.2c02670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We demonstrate a general method for the preparation of diverse N-substituted 3,4-dihydroisoquinolin-1(2H)-one compounds through an overall three-step cross-coupling/cyclization/N-deprotection/N-alkylation sequence. In the first step, ethyl 2-bromobenzoates and 2-bromo-1-carboxyethyl heterocycles are cross-coupled with commercially available potassium (2-((tert-butoxycarbonyl)amino)ethyl)trifluoroborate to produce (hetero)aryl-substituted 3-[(N-Boc-2-carboxyethyl)phenyl]ethylamines. In a subsequent two-stage process, these (hetero)arylethylamines undergo base-mediated ring closure followed by N-deprotection and N-alkylation to produce N-substituted 3,4-dihydroisoquinolin-1(2H)-ones and heteroaryl-fused N-benzyl 3,4-dihydropyridin-2(1H)-ones. Mechanistic work was performed to elucidate the order of transformations for the latter two-stage process. The method was also extended to the production of N-benzyl isoindolin-1-one and N-benzyl 2,3,4,5-tetrahydro-1H-benzo[c]azepin-1-one.
Collapse
Affiliation(s)
- Emily E Freeman
- Medicinal Chemistry Department, Curia Global, Inc., 26 Corporate Circle, Albany, New York 12203, United States
| | - Randy Jackson
- Medicinal Chemistry Department, Curia Global, Inc., 26 Corporate Circle, Albany, New York 12203, United States
| | - Jessica Luo
- Medicinal Chemistry Department, Curia Global, Inc., 26 Corporate Circle, Albany, New York 12203, United States
| | - Rajen Somwaru
- Medicinal Chemistry Department, Curia Global, Inc., 26 Corporate Circle, Albany, New York 12203, United States
| | - Alex A Sons
- Medicinal Chemistry Department, Curia Global, Inc., 26 Corporate Circle, Albany, New York 12203, United States
| | - Andrew Bean
- Medicinal Chemistry Department, Curia Global, Inc., 26 Corporate Circle, Albany, New York 12203, United States
| | - Ronald N Buckle
- Medicinal Chemistry Department, Curia Global, Inc., 26 Corporate Circle, Albany, New York 12203, United States
| | - R Jason Herr
- Medicinal Chemistry Department, Curia Global, Inc., 26 Corporate Circle, Albany, New York 12203, United States
| |
Collapse
|