1
|
Xing L, Cao S, Feng H, Zheng H, Fan H, Wang K, Zheng Y, Zhang Y, Du Y. Straightforward Access to 4-Sulfenylated Isocoumarins via Sulfoxides/MOMCl-Enabled Regioselective Cleavage and Reconfiguration of C-S Bonds. J Org Chem 2025; 90:5957-5965. [PMID: 40260622 DOI: 10.1021/acs.joc.5c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
The combination of sulfoxides with MOMCl has been found for the first time to mediate electrophilic cyclization and install a variety of sulfenyl groups onto isocoumarin skeletons via regioselective cleavage and reconfiguration of C-S bonds. Notably, MOMCl, a mild and readily available alkyl chloride, was indispensable and played a significant role as an activator under neutral conditions in this transformation, thus expanding the scope of acid-labile substrates.
Collapse
Affiliation(s)
- Linlin Xing
- School of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Shiyan Cao
- School of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Hezhuang Feng
- School of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Haixia Zheng
- School of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Haoyuan Fan
- School of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Kai Wang
- School of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Yongjun Zheng
- School of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Yong Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Bartz RH, Hellwig PS, Rosa KM, Silva MS, Lenardão EJ, Jacob RG, Perin G. Recent advances in the synthesis of chalcogenylated heterocycles obtained by chalcogenocyclization. Org Biomol Chem 2025; 23:2997-3028. [PMID: 39930985 DOI: 10.1039/d4ob01691b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Heterocyclic molecules containing organochalcogens are important scaffolds that have attracted scientific interest due to their remarkable pharmacological properties. As a consequence, in recent years several protocols have been developed for the synthesis of this class of compounds. More specifically, cyclization reactions have become a powerful tool in the synthesis of heterocycles containing two or more chalcogen atoms. This review summarizes the recent advances in the synthesis of heterocycles containing two or more chalcogens (S, Se, and Te), through a wide diversity of cyclization reactions with different substrates, with emphasis on cyclization reactions of chalcogenoalkynes and alkenes in chalcogenocyclization reactions, highlighting their scope, main advantages, synthetic differences, and limitations.
Collapse
Affiliation(s)
- Ricardo H Bartz
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Paola S Hellwig
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
- Departament of Chemistry, Federal University of Santa Maria - UFSM, 97105-900, Santa Maria, RS, Brazil.
| | - Kethelyn M Rosa
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Márcio S Silva
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Eder J Lenardão
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Raquel G Jacob
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Gelson Perin
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
3
|
McGurk DT, Knighten LE, Peña Bú MJ, Christofferson FI, Rich SD, Masih PJ, Kesharwani T. DMTSF-mediated electrophilic cyclization for the synthesis of 3-thiomethyl-substituted benzo[ b]furan derivatives. Org Biomol Chem 2025; 23:1851-1857. [PMID: 39422371 DOI: 10.1039/d4ob00958d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Benzofuran is an important backbone for molecules that make up several pharmaceuticals, herbicides/pesticides, and organo-electronics. An environmentally benign dimethyl(methylthio)sulfonium tetrafluoroborate salt was used as an electrophile to induce cyclization of o-alkynyl anisoles to form 2,3-disubstituted benzofurans. The cyclization is performed at ambient reaction conditions, only takes 12 hours to get excellent yields, and shows a high tolerance for various substituted alkynes. Also, a sulfurmethyl group obtained after the cyclization reactions allows for a cascade cyclization, and an alkyne is used in the reaction to create a thieno[3,2-b]benzofuran core structure.
Collapse
Affiliation(s)
- Declan T McGurk
- Department of Chemistry, University of West Florida, 11000 University Pkway, Pensacola, FL 32514, United States.
| | - Langley E Knighten
- Department of Chemistry, University of West Florida, 11000 University Pkway, Pensacola, FL 32514, United States.
| | - Maria J Peña Bú
- Department of Biology, University of West Florida, 11000 University Pkway, Pensacola, FL 32514, United States.
| | - Faith I Christofferson
- Department of Chemistry, University of West Florida, 11000 University Pkway, Pensacola, FL 32514, United States.
| | - Sierra D Rich
- Department of Chemistry, University of West Florida, 11000 University Pkway, Pensacola, FL 32514, United States.
| | - Prerna J Masih
- Department of Biology, University of West Florida, 11000 University Pkway, Pensacola, FL 32514, United States.
| | - Tanay Kesharwani
- Department of Chemistry, University of West Florida, 11000 University Pkway, Pensacola, FL 32514, United States.
| |
Collapse
|
4
|
Sasaki K, Kurihara M, Shigehisa H. Ring-Closing Disulfenylation of Alkenoic Thioester. J Org Chem 2024; 89:15380-15383. [PMID: 39325962 DOI: 10.1021/acs.joc.4c02180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
This study demonstrated for the first time that alkenoic thioesters can be effectively used as nucleophiles in ring-closing disulfenylation reactions. Our investigation revealed that the reaction in hexafluoroisopropanol with an electrophilic sulfur reagent significantly enhances the product yield. We gathered experimental and theoretical evidence to support the superiority of thioesters over the traditionally used benzyl sulfide. Additionally, we explored the substrate scope and identified various factors affecting the reaction selectivity and yield.
Collapse
Affiliation(s)
- Kanaru Sasaki
- Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi Nishitokyo, Tokyo 202-8585, Japan
| | - Miari Kurihara
- Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi Nishitokyo, Tokyo 202-8585, Japan
| | - Hiroki Shigehisa
- Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi Nishitokyo, Tokyo 202-8585, Japan
| |
Collapse
|
5
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
6
|
Xu Y, Zhang S, Huang D, Wu X. Reactions of alkynes with C-S bond formation: recent developments. Org Biomol Chem 2024; 22:6443-6484. [PMID: 39041389 DOI: 10.1039/d4ob00804a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Alkynes are important in organic synthesis. This review mainly focuses on recent advances (2013-2023) on alkynes with C-S bond formation, based on more than 30 types of sulfur reagents. The reactions of alkynes with various sulfur-containing compounds including RSSR (disulfides), RSH (thiols), S8 (elemental sulphur), alkynyl thioethers, RSCN, AgSCF3, K2S, Na2S, dithiane, RSCl, NFSI, RNCS, EtOCS2K, thiocarbamate, RSONH2, thiourea, sulfoxide, RSO2N3, CS2, RSO2NH2, RSO2NHNH2, RSO2Cl, RSO2Oar, RSO2SR', DABCO·(SO2)2, Na2S2O5, K2S2O5, RSO2H, RSO2Na and related compounds are discussed. Diverse mechanisms such as radical, electrophilic/nucleophilic addition, rearrangement, C-C bond cleavage, and CuAAC are discussed. The content is organized by substrates and reactivity patterns. We hope it will help in future research in this area.
Collapse
Affiliation(s)
- Yuemei Xu
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| | - Shujuan Zhang
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| | - Dayun Huang
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| | - Xiangmei Wu
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| |
Collapse
|
7
|
Wang Q, Shao C, Hua R, Yin H, Chen FX. Me 3SiBr-promoted cascade electrophilic thiocyanation/cyclization of ortho-alkynylanilines to synthesize indole derivatives. Org Biomol Chem 2024; 22:4031-4035. [PMID: 38690868 DOI: 10.1039/d4ob00367e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
A Lewis acid-promoted electrophilic thiocyanation/cyclization of ortho-alkynylanilines for the synthesis of indole derivatives has been developed. The reaction utilizes Me3SiBr as the Lewis acid and N-thiocyanatosuccinimide as the thiocyanation reagent. A series of 2-aryl-3-thiocyanato indoles were prepared in moderate to high yields under mild conditions without metals and oxidants. It provides an efficient protocol for the construction of the indole skeleton and C-SCN and C-N bonds in one step as well.
Collapse
Affiliation(s)
- Qing Wang
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China.
| | - Chukai Shao
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China.
| | - Ruirui Hua
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China.
| | - Hongquan Yin
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China.
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China
| | - Fu-Xue Chen
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China.
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China
| |
Collapse
|
8
|
Li X, Cheng Y, Li Y, Sun F, Zhan X, Yang Z, Yang J, Du Y. DMSO/SOCl 2-Enabled Synthesis of 3-Chloroindoles via Desulfonylative Chlorocyclization of N,N-Disubstituted 2-Alkynylanilines. J Org Chem 2024; 89:2039-2049. [PMID: 38241277 DOI: 10.1021/acs.joc.3c02471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
The application of the DMSO/SOCl2 system enabled the intramolecular cyclization/chlorination of N,N-disubstituted 2-alkynylanilines, leading to the synthesis of a series of 3-chloroindoles with moderate to good yields. Differing from the previously reported interrupted Pummerer reaction featuring the introduction of SMe moiety, the current approach adopted an alternative pathway that realized the incorporation of chlorine atom to the indole skeleton via a desulfonylative chlorocyclization process.
Collapse
Affiliation(s)
- Xuemin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yifu Cheng
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yue Li
- Hebei Key Laboratory of State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Fengxia Sun
- Research Center for Chemical Safety & Security and Verification Technology & College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xiangyu Zhan
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Zhifang Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jingyue Yang
- Hebei Key Laboratory of State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
9
|
Yu M, Jin T, Wang X, Li H, Ji D, Yao J, Zeng H, Shi S, Xu K, Zhang L. Regioselective intramolecular cyclization of o-alkynyl arylamines with the in situ formation of ArXCl to construct poly-functionalized 3-selenylindoles. RSC Adv 2023; 13:6210-6216. [PMID: 36825294 PMCID: PMC9941895 DOI: 10.1039/d3ra00030c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023] Open
Abstract
In this article, a practical and metal-free method for the synthesis of poly-functionalized 3-selenyl/sulfenyl/telluriumindoles from o-alkynyl arylamines has been achieved. In this protocol, the in situ formation of selenenyl chloride, sulfenyl chloride or tellurenyl chloride is considered as the key intermediate and the 3-selenyl/sulfenyl/telluriumindoles can be obtained in good to excellent yields. Furthermore, the product 2-phenyl-3-(phenylselanyl)-1-tosyl-1H-indole can be selectively oxidized to compounds 2-phenyl-3-(phenylseleninyl)-1-tosyl-1H-indole and 2-phenyl-3-(phenylselenonyl)-1-tosyl-1H-indole in good yields.
Collapse
Affiliation(s)
- Minhui Yu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 Yunnan China
- College of Biological, Chemical Sciences and Engineering, Jiaxing University Jiaxing 314001 Zhejiang China
| | - Tao Jin
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 Yunnan China
| | | | - Haohu Li
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 Yunnan China
| | - Decai Ji
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 Yunnan China
| | - Jinzhong Yao
- College of Biological, Chemical Sciences and Engineering, Jiaxing University Jiaxing 314001 Zhejiang China
| | - Heyang Zeng
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 Yunnan China
| | - Senlei Shi
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 Yunnan China
| | - Kaimeng Xu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 Yunnan China
| | - Lianpeng Zhang
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 Yunnan China
| |
Collapse
|
10
|
Mathada BS, Yernale NG. Current Advances in Transition Metal-Free Access to Indoles. A Review. ORG PREP PROCED INT 2023. [DOI: 10.1080/00304948.2022.2151810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
11
|
Li X, Wang X, Li Y, Xiao J, Du Y. Application of DMSO as a methylthiolating reagent in organic synthesis. Org Biomol Chem 2022; 20:4471-4495. [PMID: 35593912 DOI: 10.1039/d2ob00570k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the past decades, DMSO has been widely used not only as a common solvent but also as an environmentally benign oxidant in various organic transformations. Most strikingly, DMSO can be used as a sulfur source to construct methylthiolated building blocks of potential biologically active molecules, which is a remarkable achievement in the field of organic sulfur chemistry. The purpose of this review article is to summarize and discuss the main developments in the application of DMSO as a methylthiolating reagent to introduce the -SMe functionality in organic synthesis.
Collapse
Affiliation(s)
- Xuemin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Xi Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yadong Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Jiaxi Xiao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
12
|
Alikhani Z, Albertson AG, Walter CA, Masih PJ, Kesharwani T. Synthesis of Benzo[ b]thiophenes via Electrophilic Sulfur Mediated Cyclization of Alkynylthioanisoles. J Org Chem 2022; 87:6312-6320. [PMID: 35436400 DOI: 10.1021/acs.joc.1c02606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A stable dimethyl(thiodimethyl)sulfonium tetrafluoroborate salt was employed for the electrophilic cyclization reaction of o-alkynyl thioanisoles for the synthesis of 2,3-disubstituted benzo[b]thiophenes. The reaction described herein works well with various substituted alkynes in excellent yields, and a valuable thiomethyl group was introduced with ease. The reaction utilizes moderate reaction conditions and ambient temperature while tolerating various functionalities. To elucidate the mechanism, electrophilic addition reactions using the dimethyl(thiodimethyl)sulfonium tetrafluoroborate salt with diphenylacetylene was demonstrated.
Collapse
Affiliation(s)
- Zahra Alikhani
- Department of Chemistry, University of West Florida, 11000 University Pkwy, Pensacola, Florida 32514, United States
| | - Alyssa G Albertson
- Department of Chemistry, University of West Florida, 11000 University Pkwy, Pensacola, Florida 32514, United States
| | - Christopher A Walter
- Department of Chemistry, University of West Florida, 11000 University Pkwy, Pensacola, Florida 32514, United States
| | - Prerna J Masih
- Department of Biology, University of West Florida, 11000 University Pkwy, Pensacola, Florida 32514, United States
| | - Tanay Kesharwani
- Department of Chemistry, University of West Florida, 11000 University Pkwy, Pensacola, Florida 32514, United States
| |
Collapse
|