1
|
Qin S, Liao Y, Ni Q, Cao R, Chan ASC, Qiu L. Lewis Acid-Mediated Regioselective Hydrofunctionalization of Styrenes with Isatins and Heterocycles. J Org Chem 2025; 90:1016-1023. [PMID: 39785243 DOI: 10.1021/acs.joc.4c02173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The ligand-free Lewis acid-mediated regioselective hydroamination and hydroarylation of styrenes have been successfully developed in the presence of isatins or heterocyclic aryl compounds such as benzothiophenes and benzofurans. The reactions tolerate a variety of functional groups and afford the corresponding products in moderate to good yields. Deuterium labeling experiments show that the functionalized hydrogen of styrenes was derived from the nitrogen-hydrogen of the substrates in the hydroamination. Preliminary mechanistic studies suggest that the reactions may be a radical or a carbocation process.
Collapse
Affiliation(s)
- Shengxiang Qin
- School of Chemistry, IGCME, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Yunshi Liao
- School of Chemistry, IGCME, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Qiang Ni
- School of Chemistry, IGCME, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Rihui Cao
- School of Chemistry, IGCME, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Albert S C Chan
- School of Chemistry, IGCME, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | | |
Collapse
|
2
|
Zambri MT, Grewal A, Lautens M, Taylor MS. Rhodium-Catalyzed Enantioselective Ring-Openings of Oxabicyclic Alkenes with Azole Nucleophiles. J Org Chem 2024; 89:16889-16898. [PMID: 39506192 DOI: 10.1021/acs.joc.4c02437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
We report enantioselective ring-openings of oxabicyclic alkenes with azole nucleophiles, generating heterocycle-bearing dihydronaphthalene products. Pyrazoles, triazoles, tetrazoles, and benzo-fused derivatives participate in the ring-opening, with the level of regioselectivity depending on the type and substitution pattern of the heterocyclic partner. Electron-withdrawing azole substituents have a beneficial effect, suppressing the unproductive complexation of a nitrogen with the Rh(I)-bis(phosphine) catalyst.
Collapse
Affiliation(s)
- Matthew T Zambri
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada
| | - Armaan Grewal
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada
| | - Mark Lautens
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada
| | - Mark S Taylor
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada
| |
Collapse
|
3
|
Li LX, Li CR, Guo X, Zhang Z. Photoredox/Copper-Catalyzed One-Pot Aminoalkylation/Cyclization of Alkenes with Primary Amines to Synthesize Polysubstituted γ-Lactams. Org Lett 2024; 26:845-849. [PMID: 38251862 DOI: 10.1021/acs.orglett.3c03974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Visible-light-driven chemical transformation has emerged as a powerful tool for the synthesis of γ-lactams. However, during this transformation, the α-bromoimides need to be pre-prepared. Herein, we report a photoreodox/copper-catalyzed one-pot three-component reaction of alkenes with primary amines for the construction of γ-lactams. In this transformation, the orthoquinones were generated via a photocatalytic pathway, followed by attack by Cu-amido complexes and intramolecular cyclization to give the γ-lactams. This method represents a simple synthetic route displaying broad functional group tolerance, including substrates bearing alcohols, ketones, heterocycles, esters, halides, alkynes, nitriles, ethers, etc.
Collapse
Affiliation(s)
- Li-Xin Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou 450046, China
| | - Chen-Rui Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xu Guo
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhenqiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou 450046, China
| |
Collapse
|
4
|
Zhao H, Zhao Y. Engaging Isatins and Amino Acids in Multicomponent One-Pot 1,3-Dipolar Cycloaddition Reactions-Easy Access to Structural Diversity. Molecules 2023; 28:6488. [PMID: 37764264 PMCID: PMC10536439 DOI: 10.3390/molecules28186488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Multicomponent reactions (MCRs) have undoubtedly emerged as the most indispensable tool for organic chemists worldwide, finding extensive utility in the synthesis of intricate natural products, heterocyclic molecules with significant bioactivity, and pharmaceutical agents. The multicomponent one-pot 1,3-dipolar cycloaddition reactions, which were initially conceptualized by Rolf Huisgen in 1960, find extensive application in contemporary heterocyclic chemistry. In terms of green synthesis, the multicomponent 1,3-dipolar cycloaddition is highly favored owing to its numerous advantages, including high step- and atom-economies, remarkable product diversity, as well as excellent efficiency and diastereoselectivity. Among the numerous pieces of research, the most fascinating reaction involves the utilization of azomethine ylides generated from isatins and amino acids that can be captured by various dipolarophiles. This approach offers a highly efficient and convenient method for constructing spiro-pyrrolidine oxindole scaffolds, which are crucial building blocks in biologically active molecules. Consequently, this review delves deeper into the dipolarophiles utilized in the 1,3-dipolar cycloaddition of isatins and amino acids over the past six years.
Collapse
Affiliation(s)
- Hua Zhao
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | | |
Collapse
|
5
|
Wang M, Simon JC, Xu M, Corio SA, Hirschi JS, Dong VM. Copper-Catalyzed Hydroamination: Enantioselective Addition of Pyrazoles to Cyclopropenes. J Am Chem Soc 2023; 145:14573-14580. [PMID: 37390403 PMCID: PMC10433791 DOI: 10.1021/jacs.3c02971] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Chiral N-cyclopropyl pyrazoles and structurally related heterocycles are prepared using an earth-abundant copper catalyst under mild reaction conditions with high regio-, diastereo-, and enantiocontrol. The observed N2:N1 regioselectivity favors the more hindered nitrogen of the pyrazole. Experimental and DFT studies support a unique mechanism that features a five-centered aminocupration.
Collapse
Affiliation(s)
- Minghao Wang
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Julie C Simon
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Mengfei Xu
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Stephanie A Corio
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Jennifer S Hirschi
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Vy M Dong
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
6
|
Shi Y, Zhao H, Zhao Y. An Efficient Synthesis of Oxygen-Bridged Spirooxindoles via Microwave-Promoted Multicomponent Reaction. Molecules 2023; 28:molecules28083508. [PMID: 37110742 PMCID: PMC10146779 DOI: 10.3390/molecules28083508] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
A microwave-promoted multicomponent reaction of isatins, α-amino acids and 1,4-dihydro-1,4-epoxynaphthalene is achieved under environmentally friendly conditions, delivering oxygen-bridged spirooxindoles within 15 min in good to excellent yields. The attractive features of the 1,3-dipolar cycloaddition are the compatibility of various primary amino acids and the high efficiency of the short reaction time. Moreover, the scale-up reaction and synthetic transformations of spiropyrrolidine oxindole further demonstrate its synthetic utility. This work provides powerful means to expand the structural diversity of spirooxindole as a promising scaffold for novel drug discovery.
Collapse
Affiliation(s)
- Yaojing Shi
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Hua Zhao
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
7
|
Li X, Pan X, Qi Z, Li X. Palladium-Catalyzed [3 + 2] Annulation of Aryl Halides with 7-Oxa- and 7-Azabenzonorbornadienes via C(sp 2 or sp 3)–H Activation. Org Lett 2022; 24:8964-8968. [DOI: 10.1021/acs.orglett.2c03422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Xiaojiao Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an, Shaanxi 710062, China
| | - Xianting Pan
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an, Shaanxi 710062, China
| | - Zisong Qi
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an, Shaanxi 710062, China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an, Shaanxi 710062, China
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
8
|
Yoon S, Lee S, Nam SH, Lee H, Lee Y. Synthesis of N-substituted quaternary carbon centers through KO t-Bu-catalyzed aza-Michael addition of pyrazoles to cyclic enones. Org Biomol Chem 2022; 20:8313-8322. [DOI: 10.1039/d2ob01634f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study reports an effective and mild protocol for the construction of N-substituted quaternary carbon centers via the KOt-Bu-catalyzed aza-Michael addition of pyrazoles with β-substituted cyclic enones.
Collapse
Affiliation(s)
- Subin Yoon
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Sungbin Lee
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Seung Hyun Nam
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Hyejeong Lee
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Yunmi Lee
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
9
|
Geng M, Kuang J, Fang W, Miao M, Ma Y. Facile construction of C, N-disulfonated 5-amino pyrazoles through an iodine-catalyzed cascade reaction. Org Biomol Chem 2022; 20:8187-8191. [DOI: 10.1039/d2ob01647h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A green and facile synthesis of previously unreported C,N-disulfonated 5-amino pyrazoles was established through an iodine-catalyzed cascade reaction.
Collapse
Affiliation(s)
- Meiqi Geng
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Jinqiang Kuang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Weiwei Fang
- International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Maozhong Miao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, Zhejiang, China
| |
Collapse
|