1
|
Ye X, Bao P, Pan Y, Xiao H, Li Q, He G. Base-promoted tandem ring-opening/ring-closing of N-alkynyl-2-oxazolidinones enables facile synthesis of 2-oxazolines. Org Biomol Chem 2024; 22:9388-9393. [PMID: 39480528 DOI: 10.1039/d4ob01561d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
A K2CO3-promoted tandem ring-opening/ring-closing of N-alkynyl-2-oxazolidinones has been described, affording 2-oxazolines in 42-99% yields without column chromatography isolation. This operationally simple reaction proceeds under ambient conditions without a transition-metal catalyst and an external oxidant and can be applied for the late-stage functionalization of biologically active compounds.
Collapse
Affiliation(s)
- Xingyuan Ye
- Department of Applied Chemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Peng Bao
- Department of Applied Chemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yan Pan
- Department of Pharmacy, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Han Xiao
- Department of Applied Chemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Qiuwen Li
- Department of Applied Chemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Guangke He
- Department of Applied Chemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| |
Collapse
|
2
|
Akbari A, Seyedi N, Faryabi MS. Design of a new method for the synthesis of novel 2-aryl/alkyl-3H-indol-3-ones. Mol Divers 2024; 28:3-9. [PMID: 35715624 DOI: 10.1007/s11030-022-10464-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
In this research, a mild, efficient, and general method has been developed to synthesize the new derivatives of 2-aryl/alkyl-3H-indol-3-ones in moderate to excellent yields. This method allowed the syntheses of these compounds via the three-component reaction of anhydride compound, sodium cyanide, and aniline derivatives using acetic anhydride as an organic catalyst in one-pot reactions. The advantages of this method include mild reaction conditions, simple procedures, and easy workup.
Collapse
Affiliation(s)
- Ali Akbari
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, P. O. Box 8767161167, Iran.
| | - Neda Seyedi
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, P. O. Box 8767161167, Iran
| | - Muhammad Saleh Faryabi
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, P. O. Box 8767161167, Iran
| |
Collapse
|
3
|
Sheng X, Xian J, Liu S, Zhang X, Li B, Wang J, Chen X, Xie F. Green Synthesis of Pyrrolo[1,2-α]quinoxalines by Palladium-Catalyzed Transfer Hydrogenation with Nitriles as Carbon Synthons. J Catal 2023. [DOI: 10.1016/j.jcat.2023.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
4
|
Liu H, Mai X, Xian J, Liu S, Zhang X, Li B, Chen X, Li Y, Xie F. Construction of Spirocyclic Pyrrolo[1,2- a]quinoxalines via Palladium-Catalyzed Hydrogenative Coupling of Phenols and Nitroarenes. J Org Chem 2022; 87:16449-16457. [PMID: 36455265 DOI: 10.1021/acs.joc.2c02158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The replacement of fossil resources with biomass resources in the construction of N-heterocycles is rapidly attracting research interest. Herein, we report palladium-catalyzed selective hydrogenative coupling of nitroarenes and phenols based on a transfer hydrogenation strategy, allowing straightforward access to spirocyclic pyrrolo- and indolo-fused quinoxalines, a class of compounds found in numerous natural alkaloids. The synthetic protocol is characterized by a broad substrate scope and the utilization of biomass-derived reactants and commercially available catalysts. In such transformations, high-pressure and explosive hydrogen are not required. This report provides a new protocol for converting biomass-derived phenols into value-added nitrogen-containing chemicals.
Collapse
Affiliation(s)
- Haibo Liu
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China
| | - Xiaomin Mai
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China
| | - Jiayi Xian
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China
| | - Shuting Liu
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China
| | - Xiangyu Zhang
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China
| | - Bin Li
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China
| | - Xiuwen Chen
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China
| | - Yibiao Li
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China
| | - Feng Xie
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China
| |
Collapse
|