1
|
Jednačak T, Mikulandra I, Smokrović K, Hloušek-Kasun A, Kapustić M, Delaš K, Piantanida I, Jurković M, Bertoša B, Zangger K, Novak P. Antimicrobial macrozones interact with biological macromolecules via two-site binding mode of action: Fluorimetric, NMR and docking studies. Bioorg Chem 2024; 147:107338. [PMID: 38583253 DOI: 10.1016/j.bioorg.2024.107338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Macrozones are novel conjugates of azithromycin and thiosemicarbazones, which exhibit very good in vitro antibacterial activities against susceptible and some resistant bacterial strains thus showing a potential for further development. A combination of spectrometric (fluorimetry, STD and WaterLOGSY NMR) and molecular docking studies provided insights into atomic details of interactions between selected macrozones and biological receptors such as E. coli ribosome and bovine serum albumin. Fluorimetric measurements revealed binding constants in the micro-molar range while NMR experiments provided data on binding epitopes. It has been demonstrated that both STD and WaterLOGSY gave comparable and consistent results unveiling atoms in intimate contacts with biological receptors. Docking studies pointed towards main interactions between macrozones and E. coli ribosome which included specific π - π stacking and hydrogen bonding interactions with thiosemicarbazone part extending down the ribosome exit tunnel. The results of the docking experiments were in fine correlation with those obtained by NMR and fluorimetry. Our investigation pointed towards a two-site binding mechanism of interactions between macrozones and E. coli ribosome which is the most probable reason for their activity against azithromycin-resistant strains. Much better activity of macrozone-nickel coordinated compound against E. coli ribosome compared to other macrozones has been attributed to the higher polarity which enabled better bacterial membrane penetration and binding of the two thiosemicarbazone units thus additionally contributing to the overall binding energy. The knowledge gained in this study should play an important role in anti-infective macrolide design in the future.
Collapse
Affiliation(s)
- Tomislav Jednačak
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a HR-10000 Zagreb, Croatia
| | - Ivana Mikulandra
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a HR-10000 Zagreb, Croatia
| | - Kristina Smokrović
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a HR-10000 Zagreb, Croatia
| | - Andrea Hloušek-Kasun
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a HR-10000 Zagreb, Croatia
| | - Monika Kapustić
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a HR-10000 Zagreb, Croatia
| | - Kristina Delaš
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a HR-10000 Zagreb, Croatia
| | - Ivo Piantanida
- Ruđer Bošković Institute, Division of Organic Chemistry and Biochemistry, Bijenička 54 HR-10000 Zagreb, Croatia.
| | - Marta Jurković
- Ruđer Bošković Institute, Division of Organic Chemistry and Biochemistry, Bijenička 54 HR-10000 Zagreb, Croatia
| | - Branimir Bertoša
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a HR-10000 Zagreb, Croatia
| | - Klaus Zangger
- University of Graz, Institute of Chemistry, Organic and Bioorganic Chemistry, Heinrichstraße 28 A-8010 Graz, Austria
| | - Predrag Novak
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a HR-10000 Zagreb, Croatia.
| |
Collapse
|
2
|
Hofer W, Deschner F, Jézéquel G, Pessanha de Carvalho L, Abdel-Wadood N, Pätzold L, Bernecker S, Morgenstern B, Kany AM, Große M, Stadler M, Bischoff M, Hirsch AKH, Held J, Herrmann J, Müller R. Functionalization of Chlorotonils: Dehalogenil as Promising Lead Compound for In Vivo Application. Angew Chem Int Ed Engl 2024; 63:e202319765. [PMID: 38502093 DOI: 10.1002/anie.202319765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024]
Abstract
The natural product chlorotonil displays high potency against multidrug-resistant Gram-positive bacteria and Plasmodium falciparum. Yet, its scaffold is characterized by low solubility and oral bioavailability, but progress was recently made to enhance these properties. Applying late-stage functionalization, we aimed to further optimize the molecule. Previously unknown reactions including a sulfur-mediated dehalogenation were revealed. Dehalogenil, the product of this reaction, was identified as the most promising compound so far, as this new derivative displayed improved solubility and in vivo efficacy while retaining excellent antimicrobial activity. We confirmed superb activity against multidrug-resistant clinical isolates of Staphylococcus aureus and Enterococcus spp. and mature transmission stages of Plasmodium falciparum. We also demonstrated favorable in vivo toxicity, pharmacokinetics and efficacy in infection models with S. aureus. Taken together, these results identify dehalogenil as an advanced lead molecule.
Collapse
Affiliation(s)
- Walter Hofer
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy at Saarland University Campus Building E8.1, 66123, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Braunschweig, 38124, Germany
| | - Felix Deschner
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy at Saarland University Campus Building E8.1, 66123, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Braunschweig, 38124, Germany
| | - Gwenaëlle Jézéquel
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy at Saarland University Campus Building E8.1, 66123, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Braunschweig, 38124, Germany
| | - Laìs Pessanha de Carvalho
- German Centre for Infection Research (DZIF), Braunschweig, 38124, Germany
- Institute of Tropical Medicine, Eberhard Karls University Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany
| | - Noran Abdel-Wadood
- Institute for Medical Microbiology and Hygiene, Saarland University, 66421, Homburg, Germany
- Institute of Anatomy and Cell Biology /, Saarland University, 66421, Homburg, Germany
| | - Linda Pätzold
- Institute for Medical Microbiology and Hygiene, Saarland University, 66421, Homburg, Germany
| | - Steffen Bernecker
- Microbial Drugs, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Bernd Morgenstern
- Inorganic Solid State Chemistry, Saarland University Campus, 66123, Saarbrücken, Germany
| | - Andreas M Kany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy at Saarland University Campus Building E8.1, 66123, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Braunschweig, 38124, Germany
| | - Miriam Große
- German Centre for Infection Research (DZIF), Braunschweig, 38124, Germany
- Microbial Drugs, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Marc Stadler
- German Centre for Infection Research (DZIF), Braunschweig, 38124, Germany
- Microbial Drugs, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Markus Bischoff
- Institute for Medical Microbiology and Hygiene, Saarland University, 66421, Homburg, Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy at Saarland University Campus Building E8.1, 66123, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Braunschweig, 38124, Germany
- Helmholtz International Lab for Anti-Infectives, Saarbrücken, 66123, Germany
| | - Jana Held
- German Centre for Infection Research (DZIF), Braunschweig, 38124, Germany
- Institute of Tropical Medicine, Eberhard Karls University Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, BP 242, BP 242, Gabon
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy at Saarland University Campus Building E8.1, 66123, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Braunschweig, 38124, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy at Saarland University Campus Building E8.1, 66123, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Braunschweig, 38124, Germany
- Helmholtz International Lab for Anti-Infectives, Saarbrücken, 66123, Germany
| |
Collapse
|