1
|
Dai Y, Zhuang M, Deng YX, Liao Y, Gu J, Song T, Yan H, Zheng JC. Stable Cycling of All-Solid-State Lithium Batteries Enabled by Cyano-Molecular Diamond Improved Polymer Electrolytes. NANO-MICRO LETTERS 2024; 16:217. [PMID: 38884846 PMCID: PMC11182998 DOI: 10.1007/s40820-024-01415-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/05/2024] [Indexed: 06/18/2024]
Abstract
The interfacial instability of the poly(ethylene oxide) (PEO)-based electrolytes impedes the long-term cycling and further application of all-solid-state lithium metal batteries. In this work, we have shown an effective additive 1-adamantanecarbonitrile, which contributes to the excellent performance of the poly(ethylene oxide)-based electrolytes. Owing to the strong interaction of the 1-Adamantanecarbonitrile to the polymer matrix and anions, the coordination of the Li+-EO is weakened, and the binding effect of anions is strengthened, thereby improving the Li+ conductivity and the electrochemical stability. The diamond building block on the surface of the lithium anode can suppress the growth of lithium dendrites. Importantly, the 1-Adamantanecarbonitrile also regulates the formation of LiF in the solid electrolyte interface and cathode electrolyte interface, which contributes to the interfacial stability (especially at high voltages) and protects the electrodes, enabling all-solid-state batteries to cycle at high voltages for long periods of time. Therefore, the Li/Li symmetric cell undergoes long-term lithium plating/stripping for more than 2000 h. 1-Adamantanecarbonitrile-poly(ethylene oxide)-based LFP/Li and 4.3 V Ni0.8Mn0.1Co0.1O2/Li all-solid-state batteries achieved stable cycles for 1000 times, with capacity retention rates reaching 85% and 80%, respectively.
Collapse
Affiliation(s)
- Yang Dai
- Department of Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, People's Republic of China
| | - Mengbing Zhuang
- Department of Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, People's Republic of China
| | - Yi-Xiao Deng
- Department of Physics, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yuan Liao
- Department of Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, People's Republic of China
| | - Jian Gu
- Department of Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, People's Republic of China.
| | - Tinglu Song
- Experimental Center of Advanced Materials School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Hao Yan
- Department of Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, People's Republic of China.
| | - Jin-Cheng Zheng
- Department of Physics, Xiamen University, Xiamen, 361005, People's Republic of China.
- Department of Physics and Department of New Energy Science and Engineering, Xiamen University Malaysia, 43900, Sepang, Malaysia.
| |
Collapse
|
2
|
Swaby C, Taylor A, Greaney MF. An NHC-Catalyzed Desulfonylative Smiles Rearrangement of Pyrrole and Indole Carboxaldehydes. J Org Chem 2023; 88:12821-12825. [PMID: 37589318 PMCID: PMC10476196 DOI: 10.1021/acs.joc.3c01089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 08/18/2023]
Abstract
The use of catalysis methods to enable Smiles rearrangement opens up new substrate classes for arylation under mild conditions. Here, we describe an N-heterocyclic carbene (NHC) catalysis system that accesses indole and pyrrole aldehyde substrates in a desulfonylative Smiles process. The reaction proceeds under mild, transition-metal-free conditions and captures acyl anion reactivity for the synthesis of a diverse array of 2-aroyl indoles and pyrroles from readily available sulfonamide starting materials.
Collapse
Affiliation(s)
| | | | - Michael F. Greaney
- Dept. of Chemistry, University of Manchester, Oxford Rd, Manchester, M13 9PL, U.K.
| |
Collapse
|
3
|
Zhang G, Miao H, Guan C, Ding C. Palladium-Catalyzed Direct Decarbonylative Cyanation of Aryl Carboxylic Acids. J Org Chem 2022; 87:12791-12798. [PMID: 36094820 DOI: 10.1021/acs.joc.2c01401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The direct transformation of aryl carboxylic acids to aryl nitrile compounds is an interesting topic because carboxylic acids are not only abundant in nature but are also inexpensive and stable. Here, the synthesis of a series of aryl nitriles by palladium-catalyzed decarbonylative cyanation of carboxylic acids without base has been achieved. The successful decarbonylative cyanation of drug molecules and Gram-scale reaction to verify the practicality and operability of this method are analyzed.
Collapse
Affiliation(s)
- Guofu Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Huzhou 313299, People's Republic of China
| | - Huihui Miao
- College of Chemical Engineering, Zhejiang University of Technology, Huzhou 313299, People's Republic of China
| | - Chenfei Guan
- College of Chemical Engineering, Zhejiang University of Technology, Huzhou 313299, People's Republic of China
| | - Chengrong Ding
- College of Chemical Engineering, Zhejiang University of Technology, Huzhou 313299, People's Republic of China
| |
Collapse
|
4
|
Xu T, Li W, Zhang K, Han Y, Liu L, Huang T, Li C, Tang Z, Chen T. Palladium-Catalyzed Decarbonylative Cyanation of Carboxylic Acids with TMSCN. J Org Chem 2022; 87:11871-11879. [PMID: 35951542 DOI: 10.1021/acs.joc.2c01375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The direct decarbonylative cyanation of benzoic acids with TMSCN was achieved through palladium catalysis. By this strategy, a wide range of nitriles including those with functional groups was synthesized in good to high yields. Moreover, this reaction applied to modifying bioactive molecules such as adapalene, probenecid, telmisartan, and 3-methylflavone-8-carboxylic acid. These results demonstrate that this new reaction has potential synthetic value in organic synthesis.
Collapse
Affiliation(s)
- Tianhao Xu
- Key Laboratory of the Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemistry, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Wenhui Li
- Key Laboratory of the Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemistry, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Kang Zhang
- Key Laboratory of the Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemistry, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Yuhui Han
- Key Laboratory of the Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemistry, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Long Liu
- Key Laboratory of the Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemistry, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Tianzeng Huang
- Key Laboratory of the Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemistry, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Chunya Li
- Key Laboratory of the Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemistry, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Zhi Tang
- Key Laboratory of the Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemistry, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Tieqiao Chen
- Key Laboratory of the Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemistry, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| |
Collapse
|