1
|
Gao C, Tang K, Yang X, Gao S, Zheng Q, Chen X, Liu J. Cu-Catalyzed Diastereo- and Enantioselective Synthesis of Borylated Cyclopropanes with Three Contiguous Stereocenters. J Am Chem Soc 2025; 147:3360-3370. [PMID: 39818822 DOI: 10.1021/jacs.4c14158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Direct synthesis of enantioenriched scaffolds with multiple adjacent stereocenters remains an important yet challenging task. Herein, we describe a highly diastereo- and enantioselective Cu-catalyzed alkylboration of cyclopropenes, with less reactive alkyl iodides as electrophiles, for the efficient synthesis of tetra-substituted borylated cyclopropanes bearing three consecutive stereocenters. This protocol features mild conditions, a broad substrate scope, and good functional group tolerance, affording an array of chiral borylated cyclopropanes in good to high yields with excellent diastereo- and enantioselectivities. Detailed mechanistic experiments and kinetic studies were conducted to elucidate the reaction pathway and the rate-determining step of the reaction. DFT calculations revealed that the π···π stacking interaction between the phenyl groups on the substrate and the phosphorus ligand, along with the smaller distortion in the CuL-Bpin part, contributed to the high diastereo- and enantioselectivities. The synthetic utility of the protocol was showcased by the facile synthesis of some valuable chiral cyclopropanes with multiple chiral centers.
Collapse
Affiliation(s)
- Chao Gao
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Kai Tang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Xi Yang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Shen Gao
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Qingshu Zheng
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Xiangyang Chen
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Jiawang Liu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| |
Collapse
|
2
|
Fang H, Manoj N, Popescu MV, Noble A, Paton RS, Aggarwal VK. Platinum-Catalyzed Regio- and Enantioselective Diboration of Unactivated Alkenes with (pin)B-B(dan). Angew Chem Int Ed Engl 2025; 64:e202413504. [PMID: 39140613 DOI: 10.1002/anie.202413504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/15/2024]
Abstract
Asymmetric diboration of terminal alkenes is well established, and subsequent selective functionalization of the less hindered primary boronic ester is commonly achieved. Conversely, selective functionalization of the sterically less accessible secondary boronic ester remains challenging. An alternative way to control chemoselective functionalization of bis(boron) compounds is by engendering different Lewis acidity to the two boryl moieties, since reactivity would then be dictated by Lewis acidity instead of sterics. We report herein the regio- and enantioselective Pt-catalyzed diboration of unactivated alkenes with (pin)B-B(dan). A broad range of terminal and cyclic alkenes undergo diboration to furnish the differentiable 1,2-bis(boron) compounds with high levels of regio- and enantiocontrol, giving access to a wide variety of novel building blocks from a common intermediate. The reaction places the less Lewis acidic B(dan) group at the less hindered position and the resulting 1,2-bisboryl alkanes undergo selective transformations of the B(pin) group located at the more hindered position. The regioselectivity of the diboration has been studied by DFT calculations and is believed to originate from the trans influence, which lowers the activation barrier for formation of the regioisomer that places the weaker electron donor [B(pin) vs B(dan)] opposite the strong electron donor (alkyl group) in the platinum complex.
Collapse
Affiliation(s)
- Huaquan Fang
- School of Chemistry, University of Bristol, Cantock's Close, BS8 1TS, Bristol, UK
| | - Niket Manoj
- Department of Chemistry, Colorado State University, 80523-1872, Ft. Collins, Colorado, US
| | - Mihai V Popescu
- Department of Chemistry, Colorado State University, 80523-1872, Ft. Collins, Colorado, US
| | - Adam Noble
- School of Chemistry, University of Bristol, Cantock's Close, BS8 1TS, Bristol, UK
| | - Robert S Paton
- Department of Chemistry, Colorado State University, 80523-1872, Ft. Collins, Colorado, US
| | - Varinder K Aggarwal
- School of Chemistry, University of Bristol, Cantock's Close, BS8 1TS, Bristol, UK
| |
Collapse
|
3
|
Zhao J, Chen A, Zou X, Ji C, Feng H, Gao D. Catalytic Selective Functionalization of Poly(organoborons) †. CHINESE J CHEM 2024; 42:3484-3498. [DOI: 10.1002/cjoc.202400500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/06/2024] [Indexed: 01/03/2025]
Abstract
Comprehensive SummaryOrganoborons are commonly used building blocks for rapidly increasing molecular complexity. Although significant progress has been made in the selective functionalization of mono‐organoborons, the site‐selective functionalization of poly(organoborons) has attracted substantial interest in organic synthesis, pharmaceuticals, and agrochemicals due to the presence of multiple potential reaction sites. This review discusses various activation modes of the target C–B bond, with diverse transformations being achieved in both a selective and efficient manner. Recent advances in the catalytic selective transformations of 1,n‐diboronates through ionic and radical pathways are highlighted. Furthermore, we summarize the existing challenges and future research directions in this field.
Key ScientistsIn 1993, Suzuki, Miyaura and coworkers developed a pioneering example of selective arylation towards cis‐1,2‐bis(boryl) alkenes, marking the inception of this field. The Morken group has made significant contributions to the asymmetric diboration of alkenes and realized elegant catalytic functionalization of these compounds since 2004. In 2016, Fernández and colleagues achieved the selective arylation of the internal C–B bond of tri(boronates). Since 2019, the Aggarwal group has developed efficient Giese‐type addition and selective arylation at the more substituted C–B bond of 1,2‐bis(boronic) esters through photoredox catalysis. The controllable regiodivergent alkynylation of 1,3‐bis(boronic) esters was developed by Gao and coworkers in 2023. Recently, Qin conducted elegant research on the programmable late‐stage functionalization of bridge‐substituted bicyclo[1.1.1]pentane (BCP) bis‐boronates. Since 2013, catalytic stereoselective transformations have been developed by several groups, including those led by Morken and Chen. This review summarizes the latest and most significant developments in this field since 1993.
Collapse
Affiliation(s)
- Jia‐Hui Zhao
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 China
| | - Ang Chen
- School of Physical Science and Technology ShanghaiTech University Shanghai 200120 China
| | - Xi‐Zhang Zou
- School of Physical Science and Technology ShanghaiTech University Shanghai 200120 China
| | - Chong‐Lei Ji
- School of Physical Science and Technology ShanghaiTech University Shanghai 200120 China
| | - Huang‐Di Feng
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 China
| | - De‐Wei Gao
- School of Physical Science and Technology ShanghaiTech University Shanghai 200120 China
| |
Collapse
|
4
|
Bastick KAC, Roberts DD, Watson AJB. The current utility and future potential of multiborylated alkanes. Nat Rev Chem 2024; 8:741-761. [PMID: 39327469 DOI: 10.1038/s41570-024-00650-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
Organoboron chemistry has become a cornerstone of modern synthetic methodology. Most of these reactions use an organoboron starting material that contains just one C(sp2)-B or C(sp3)-B bond; however, there has been a recent and accelerating trend to prepare multiborylated alkanes that possess two or more C(sp3)-B bonds. This is despite a lack of general reactivity, meaning many of these compounds currently offer limited downstream synthetic value. This Review summarizes recent advances in the exploration of multiborylated alkanes, including a discussion on how these products may be elaborated in further synthetic manipulations.
Collapse
Affiliation(s)
- Kane A C Bastick
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - Dean D Roberts
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - Allan J B Watson
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK.
| |
Collapse
|
5
|
Zou XZ, Ge JF, Yang YX, Huang YF, Gao DW. Regioselective Alkynylation and Alkenylation at the More Hindered C-B Bond of 1,2-Bis(Boronic) Esters. Org Lett 2024; 26:1595-1600. [PMID: 38373166 DOI: 10.1021/acs.orglett.3c04301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Selective transformations at the more sterically hindered sites of organic molecules represent a frontier in the ability to precisely modify molecules. The lack of effective synthetic methods stands in stark contrast to the large number of encumbered sites encountered in molecules of interest. Here, we demonstrate that 1,2-bis(boronates) undergo selective alkynylation and alkenylation at the more sterically hindered C-B bond. Our preliminary mechanistic studies disclosed that this reaction can proceed through two convergent pathways involving direct coupling of sterically encumbered site versus 1,2-boron migratory coupling. Notably, this method facilitated convenient access to alkenyl and alkynyl boron products, which can be diversified by an array of transformations.
Collapse
Affiliation(s)
- Xi-Zhang Zou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 200120, China
| | - Jian-Fei Ge
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 200120, China
| | - Yun-Xiao Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 200120, China
| | - Yi-Fan Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 200120, China
| | - De-Wei Gao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 200120, China
| |
Collapse
|
6
|
Chen A, Qiao Y, Gao DW. Controllable Regiodivergent Alkynylation of 1,3-Bis(Boronic) Esters Activated by Distinct Organometallic Reagents. Angew Chem Int Ed Engl 2023; 62:e202312605. [PMID: 37849448 DOI: 10.1002/anie.202312605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/19/2023]
Abstract
1,3-Bis(boronic) esters can be readily synthesized from alkylBpin precursors. Selective transformations of these compounds hold the potential for late-stage functionalization of the remaining C-B bond, leading to a diverse array of molecules. Currently, there are no strategies available to address the reactivity and, more importantly, the controllable regiodivergent functionalization of 1,3-bis(boronic) esters. In this study, we have achieved controllable regiodivergent alkynylation of these molecules. The regioselectivity has been clarified based on the unique chelation patterns observed with different organometallic reagents. Remarkably, this methodology effectively addresses the low reactivity of 1,3-bis(boronic) esters and bridges the gap in radical chemistry, which typically yields only the classical products formed via stable radical intermediates. Furthermore, the compounds synthesized through this approach serve as potent building blocks for creating molecular diversity.
Collapse
Affiliation(s)
- Ang Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Yang Qiao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - De-Wei Gao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| |
Collapse
|
7
|
Bosveli A, Griboura N, Kampouropoulos I, Kalaitzakis D, Montagnon T, Vassilikogiannakis G. The Rapid Synthesis of Colibactin Warhead Model Compounds Using New Metal-Free Photocatalytic Cyclopropanation Reactions Facilitates the Investigation of Biological Mechanisms. Chemistry 2023; 29:e202301713. [PMID: 37452669 DOI: 10.1002/chem.202301713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Herein, we report the synthesis of a series of colibactin warhead model compounds using two newly developed metal-free photocatalytic cyclopropanation reactions. These mild cyclopropanations expand the known applications of eosin within synthesis. A halogen atom transfer reaction mode has been harnessed so that dihalides can be used as the cyclopropanating agents. The colibactin warhead models were then used to provide new insight into two key mechanisms in colibactin chemistry. An explanation is provided for why the colibactin warhead sometimes undergoes a ring expansion-addition reaction to give fused cyclobutyl products while at other times nucleophiles add directly to the cyclopropyl unit (as when DNA adds to colibactin). Finally, we provide some evidence that Cu(II) chelated to colibactin may catalyze an important oxidation of the colibactin-DNA adduct. The Cu(I) generated as a result could then also play a role in inducing double strand breaks in DNA.
Collapse
Affiliation(s)
- Artemis Bosveli
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003, Iraklion, Crete
| | - Nefeli Griboura
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003, Iraklion, Crete
| | | | - Dimitris Kalaitzakis
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003, Iraklion, Crete
| | - Tamsyn Montagnon
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003, Iraklion, Crete
| | | |
Collapse
|
8
|
Ratanlal M, Vankudoth J, Sharma GVM, Mali MA, Carboni B, Berrée F, Ghosh S. Regio- and stereocontrolled synthesis of borylated E-enynes, Z-enediynes and derivatives from alkenyl-1,2-bis-(boronates). Org Biomol Chem 2023; 21:7567-7571. [PMID: 37671616 DOI: 10.1039/d3ob00543g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
An efficient stereo-controlled synthesis of enyne and enediyne derivatives, via sequential Suzuki-Miyaura coupling reactions from easily prepared 1-alkene-1,2-diboronic esters and alkynyl bromides, is reported. The resulting enyne boronic esters were subjected to Borono-Mannich and Suzuki coupling reactions independently to obtain α,β-unsaturated aminoester and tri-substituted olefin derivatives, respectively. Additionally, divergent syntheses of triazole and cyclopropylboronate derivatives are also reported.
Collapse
Affiliation(s)
- Malavath Ratanlal
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India.
| | - Jayaram Vankudoth
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India.
| | - Gangavaram V M Sharma
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India.
| | - Maruti A Mali
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India.
| | - Bertrand Carboni
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Fabienne Berrée
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Subhash Ghosh
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India.
| |
Collapse
|
9
|
Munir R, Zahoor AF, Javed S, Parveen B, Mansha A, Irfan A, Khan SG, Irfan A, Kotwica-Mojzych K, Mojzych M. Simmons-Smith Cyclopropanation: A Multifaceted Synthetic Protocol toward the Synthesis of Natural Products and Drugs: A Review. Molecules 2023; 28:5651. [PMID: 37570621 PMCID: PMC10420228 DOI: 10.3390/molecules28155651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Simmons-Smith cyclopropanation is a widely used reaction in organic synthesis for stereospecific conversion of alkenes into cyclopropane. The utility of this reaction can be realized by the fact that the cyclopropane motif is a privileged synthetic intermediate and a core structural unit of many biologically active natural compounds such as terpenoids, alkaloids, nucleosides, amino acids, fatty acids, polyketides and drugs. The modified form of Simmons-Smith cyclopropanation involves the employment of Et2Zn and CH2I2 (Furukawa reagent) toward the total synthesis of a variety of structurally complex natural products that possess broad range of biological activities including anticancer, antimicrobial and antiviral activities. This review aims to provide an intriguing glimpse of the Furukawa-modified Simmons-Smith cyclopropanation, within the year range of 2005 to 2022.
Collapse
Affiliation(s)
- Ramsha Munir
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (R.M.); (B.P.); (A.M.); (S.G.K.); (A.I.)
| | - Ameer Fawad Zahoor
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (R.M.); (B.P.); (A.M.); (S.G.K.); (A.I.)
| | - Sadia Javed
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Bushra Parveen
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (R.M.); (B.P.); (A.M.); (S.G.K.); (A.I.)
| | - Asim Mansha
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (R.M.); (B.P.); (A.M.); (S.G.K.); (A.I.)
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia;
| | - Samreen Gul Khan
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (R.M.); (B.P.); (A.M.); (S.G.K.); (A.I.)
| | - Ali Irfan
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (R.M.); (B.P.); (A.M.); (S.G.K.); (A.I.)
| | - Katarzyna Kotwica-Mojzych
- Laboratory of Experimental Cytology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland;
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3-go Maja 54, 08-110 Siedlce, Poland
| |
Collapse
|
10
|
Teresa J, Velado M, Fernández de la Pradilla R, Viso A, Lozano B, Tortosa M. Enantioselective Suzuki cross-coupling of 1,2-diboryl cyclopropanes. Chem Sci 2023; 14:1575-1581. [PMID: 36794195 PMCID: PMC9906671 DOI: 10.1039/d2sc05789a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Herein, we describe the catalytic enantioselective cross-coupling of 1,2-bisboronic esters. Prior work on group specific cross coupling is limited to the use of geminal bis-boronates. This desymmetrization provides a novel approach to prepare enantioenriched cyclopropyl boronates with three contiguous stereocenters, that could be further derivatized through selective functionalization of the carbon-boron bond. Our results suggest that transmetallation, which is the enantiodetermining step, takes place with retention of stereochemistry at carbon.
Collapse
Affiliation(s)
- Javier Teresa
- Organic Chemistry Department, Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Universidad Autónoma de Madrid (UAM) 28049 Madrid Spain
| | - Marina Velado
- Instituto de Química Orgánica General (IQOG), CSIC Juan de la Cierva 3 28006 Madrid Spain
| | | | - Alma Viso
- Instituto de Química Orgánica General (IQOG), CSIC Juan de la Cierva 3 28006 Madrid Spain
| | - Blanca Lozano
- Organic Chemistry Department, Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Universidad Autónoma de Madrid (UAM) 28049 Madrid Spain
| | - Mariola Tortosa
- Organic Chemistry Department, Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Universidad Autónoma de Madrid (UAM) 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM) 28049 Madrid Spain
| |
Collapse
|
11
|
Augustin AU, Di Silvio S, Marek I. Borylated Cyclopropanes as Spring-Loaded Entities: Access to Vicinal Tertiary and Quaternary Carbon Stereocenters in Acyclic Systems. J Am Chem Soc 2022; 144:16298-16302. [PMID: 36041738 PMCID: PMC9479080 DOI: 10.1021/jacs.2c07394] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Herein, we present the formation of acyclic frameworks
bearing
two consecutive stereocenters of either tertiary or quaternary nature
starting from easily accessible cyclopropenes. This holistic approach
involves a regio- and diastereoselective hydro- or carboborylation
of substituted cyclopropenyl esters. Formation of boronate complexes
of the latter via the addition of nucleophiles and subsequent stereospecific
1,2-migration with carbon–carbon bond cleavage delivered the
title compounds.
Collapse
Affiliation(s)
- André U Augustin
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| | - Sergio Di Silvio
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| |
Collapse
|
12
|
Viso A, Fernández de la Pradilla R, Tortosa M. Site-Selective Functionalization of C(sp 3) Vicinal Boronic Esters. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alma Viso
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | | | - Mariola Tortosa
- Departamento de Química Orgánica and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|