1
|
Iwai K, Hikasa A, Yoshioka K, Tani S, Umezu K, Nishiwaki N. Synthesis of tricarbonylated propargylamine and conversion to 2,5-disubstituted oxazole-4-carboxylates. Beilstein J Org Chem 2024; 20:2827-2833. [PMID: 39530080 PMCID: PMC11552412 DOI: 10.3762/bjoc.20.238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The N,O-acetal derived from diethyl mesoxalate (DEMO) undergoes elimination of acetic acid upon treatment with a base, leading to the formation of N-acylimine in situ. Lithium acetylide readily attacks the imino group to afford N,1,1-tricarbonylated propargylamines. When the resulting propargylamine reacts with butyllithium, ring closure occurs between the ethynyl and carbamoyl groups, yielding 2,5-disubstituted oxazole-4-carboxylates. This cyclization also occurs when the propargylamine is heated with ammonium acetate, resulting in double activation.
Collapse
Affiliation(s)
- Kento Iwai
- School of Engineering Science, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
- Research Center for Molecular Design, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
- Department of Chemistry, Faculty of Science, Nara Women’s University, Kitauoyahigashimachi, Nara 630-8506, Japan
| | - Akari Hikasa
- School of Engineering Science, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
| | - Kotaro Yoshioka
- Kumiai Chemical Industry Co. Ltd., Nakanogo, Fuji, Shizuoka 421-3306, Japan and 5K • I Chemical Industry Co. Ltd., Shinoshinden, Iwata, Shizuoka 437-1213, Japan
| | - Shinki Tani
- Kumiai Chemical Industry Co. Ltd., Nakanogo, Fuji, Shizuoka 421-3306, Japan and 5K • I Chemical Industry Co. Ltd., Shinoshinden, Iwata, Shizuoka 437-1213, Japan
| | - Kazuto Umezu
- Kumiai Chemical Industry Co. Ltd., Nakanogo, Fuji, Shizuoka 421-3306, Japan and 5K • I Chemical Industry Co. Ltd., Shinoshinden, Iwata, Shizuoka 437-1213, Japan
| | - Nagatoshi Nishiwaki
- School of Engineering Science, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
- Research Center for Molecular Design, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
| |
Collapse
|
2
|
Tay G, Nishimura S, Oguri H. Direct photochemical intramolecular [4 + 2] cycloadditions of dehydrosecodine-type substrates for the synthesis of the iboga-type scaffold and divergent [2 + 2] cycloadditions employing micro-flow system. Chem Sci 2024:d4sc02597k. [PMID: 39345776 PMCID: PMC11423653 DOI: 10.1039/d4sc02597k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/15/2024] [Indexed: 10/01/2024] Open
Abstract
Photocyclisation reactions offer a convenient and versatile method for constructing complex polycyclic scaffolds, particularly in the synthesis of natural products. While the [2 + 2] photocycloaddition reaction is well-established and extensively reported, the [4 + 2] counterpart via direct photochemical means remains challenging and relatively unexplored. In this work, we devised the rapid assembly of the iboga-type scaffold through photochemical intramolecular Diels-Alder reaction using a common biomimetic dehydrosecodine-type intermediate having vinyl indole and dihydropyridine (DHP) sub-units. Exploiting a micro-flow system, the medicinally important iboga-type scaffold was obtained up to 77% yield under mild, neutral conditions at room temperature. This study demonstrated the site-selective activation of the DHP moiety by direct UV-LED irradiation, eliminating the need for external photocatalysts or photosensitisers and showing good tolerance to a wide range of stabilised dehydrosecodine-type substrates. By adjusting the spatial arrangement of the DHP ring and the vinyl indole group, this versatile photochemical approach efficiently facilitates both [4 + 2] and [2 + 2] cyclisations, assembling architecturally complex multicyclic scaffolds. Precise photoactivation of the DHP subunit, generating short-lived biradical species, enabled the new way of harnessing the hidden but innately pre-encoded reactivity of the polyunsaturated dehydrosecodine-type intermediate. These photo-mediated [4 + 2] cyclisation and divergent [2 + 2] cycloadditions are distinct from biosynthetic processes, which are mainly mediated through concerted thermal cycloadditions.
Collapse
Affiliation(s)
- Gavin Tay
- Department of Chemistry, Graduate School of Science, The University of Tokyo Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Soushi Nishimura
- Department of Chemistry, Graduate School of Science, The University of Tokyo Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Hiroki Oguri
- Department of Chemistry, Graduate School of Science, The University of Tokyo Hongo Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
3
|
Kurihara Y, Yagi M, Noguchi T, Yasufuku H, Okita A, Yoshimura S, Oishi T, Chida N, Okamura T, Sato T. Total Synthesis of Keramaphidin B and Ingenamine by Base-Catalyzed Diels-Alder Reaction Using Dynamic Regioselective Crystallization. J Am Chem Soc 2024. [PMID: 38592076 DOI: 10.1021/jacs.4c02338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The control of the selectivity is a central issue in the total synthesis of complex natural products. In this paper, we report the total synthesis of (±)-keramaphidin B and (±)-ingenamine. The key reaction is a DMAP-catalyzed Diels-Alder reaction in which the regioselectivity is completely controlled by dynamic crystallization. Our synthesis successfully demonstrates that dynamic crystallization can be an alternative when the selectivity is not controlled by either kinetic or thermodynamic approaches in solution.
Collapse
Affiliation(s)
- Yuki Kurihara
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Minori Yagi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Takashi Noguchi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Haruka Yasufuku
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Ayane Okita
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Sho Yoshimura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Takeshi Oishi
- School of Medicine, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama 223-8521, Japan
| | - Noritaka Chida
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Toshitaka Okamura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Takaaki Sato
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
4
|
Dalling AG, Späth G, Fürstner A. Total Synthesis of the Tetracyclic Pyridinium Alkaloid epi-Tetradehydrohalicyclamine B. Angew Chem Int Ed Engl 2022; 61:e202209651. [PMID: 35971850 PMCID: PMC9826155 DOI: 10.1002/anie.202209651] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Indexed: 01/11/2023]
Abstract
The first total synthesis of a tetracyclic marine pyridinium alkaloid hinged on recent advances in chemoselectivity management: While many classical methods failed to afford the perceptively simple pyridine-containing core of the target, nickel/iridium photoredox dual catalysis allowed the critical C-C bond to be formed in good yield. Likewise, ring closing alkyne metathesis (RCAM) worked well in the presence of the unhindered pyridine despite the innately Lewis acidic Mo(+6) center of the alkylidyne catalyst. Finally, an iridium catalyzed hydrosilylation was uniquely effective in reducing a tertiary amide without compromising an adjacent pyridine and the lateral double bonds; this transformation is largely without precedent. The second strained macrocycle enveloping the core was closed by intramolecular N-alkylation with formation of the pyridinium unit; the reaction proceeded site- and chemoselectively in the presence of an a priori more basic tertiary amine.
Collapse
Affiliation(s)
| | - Georg Späth
- Max-Planck-Institut für Kohlenforschung45470Mülheim/RuhrGermany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung45470Mülheim/RuhrGermany
| |
Collapse
|
5
|
Dalling AG, Späth G, Fürstner A. Total Synthesis of the Tetracyclic Pyridinium Alkaloid epi‐Tetradehydrohalicyclamine B. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Andrew G. Dalling
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Organometallic Chemistry GERMANY
| | - Georg Späth
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Organometallic Chemistry GERMANY
| | - Alois Fürstner
- Max-Planck-Institut fur Kohlenforschung Organometallic Chemistry Kaiser-Wilhelm-Platz 1 45470 Mülheim/Ruhr GERMANY
| |
Collapse
|