1
|
Di Terlizzi L, Nicchio L, Protti S, Fagnoni M. Visible photons as ideal reagents for the activation of coloured organic compounds. Chem Soc Rev 2024; 53:4926-4975. [PMID: 38596901 DOI: 10.1039/d3cs01129a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In recent decades, the traceless nature of visible photons has been exploited for the development of efficient synthetic strategies for the photoconversion of colourless compounds, namely, photocatalysis, chromophore activation, and the formation of an electron donor/acceptor (EDA) complex. However, the use of photoreactive coloured organic compounds is the optimal strategy to boost visible photons as ideal reagents in synthetic protocols. In view of such premises, the present review aims to provide its readership with a collection of recent photochemical strategies facilitated via direct light absorption by coloured molecules. The protocols have been classified and presented according to the nature of the intermediate/excited state achieved during the transformation.
Collapse
Affiliation(s)
- Lorenzo Di Terlizzi
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Luca Nicchio
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
2
|
Chawla R, Singh AK, Dutta PK. Arylazo sulfones: multifaceted photochemical reagents and beyond. Org Biomol Chem 2024; 22:869-893. [PMID: 38196324 DOI: 10.1039/d3ob01599h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The photochemical action of arylazo sulfones under visible light irradiation has recently gained considerable attention for the construction of carbon-carbon and carbon-heteroatom bonds in organic synthesis. The inherent dyedauxiliary group (-N2SO2R) embedded in the reagent is responsible for the absorption of visible light even in the absence of a photocatalyst, additive or oxidant, leading to the generation of three different radicals, viz. aryl (carbon-centred), sulfonyl (sulphur-centred) and diazenyl (nitrogen-centred) radicals, under different reaction conditions. Encountering a reagent with such a versatile behaviour is quite rare, which makes arylazo sulfones a highly interesting class of compounds. The mild reaction conditions under which these reagents can operate are an added advantage. Recently, they are also being used as non-ionic photoacid generators (PAGs), electron acceptors, and hydrogen atom transfer (HAT) and imination reagents in a number of synthetic transformations. They have displayed substantial damaging effect on the structure of DNA in the presence of light which can lead to their use as phototoxic pharmaceuticals for cancer treatment. Moreover, their photochemistry is also being exploited in polymerization reactions (as photoinitiators) and in materials chemistry (surface modification).
Collapse
Affiliation(s)
- Ruchi Chawla
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| | - Atul K Singh
- Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Pradip K Dutta
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| |
Collapse
|
3
|
Polyansky DE, Manbeck GF, Ertem MZ. Combined Effects of Hemicolligation and Ion Pairing on Reduction Potentials of Biphenyl Radical Cations. J Phys Chem A 2023; 127:7918-7927. [PMID: 37721794 DOI: 10.1021/acs.jpca.3c03817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Formal reduction potentials of highly oxidizing and short-lived radical cations of substituted biphenyls generated by pulse radiolysis in 1,2-dichloroethane (DCE) were measured using a redox equilibrium ladder method. The effect of halide ion-radical interactions on reduction potentials of biphenyls was examined by utilizing the ability of DCE to release Cl- in the vicinity of the radical cation. The Hammett correlation of measured potentials across a range of over 700 mV shows saturation at high Hammett sigma values. This effect has been explained by both ion-pairing and hemicolligation interactions between biphenyl radical cations and Cl- and appears to modulate reduction potentials by as much as 400 mV. This finding offers a convenient way to manipulate the energetics of electron transfer involving organic redox species.
Collapse
Affiliation(s)
- Dmitry E Polyansky
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Gerald F Manbeck
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Mehmed Z Ertem
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| |
Collapse
|
4
|
Li S, Lei L, Feng B, Liu X, Xian L, Li Y. N-Iodosuccinimide-Mediated Synthesis of Benzo-Fused Bisimidazoles Enabled by a One-Pot Tandem Reaction of Fluorinated Propargyl Amidines. J Org Chem 2023; 88:4101-4111. [PMID: 36926882 DOI: 10.1021/acs.joc.2c02379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
A N-iodosuccinimide (NIS)-mediated divergent and efficient tandem reaction between fluorinated propargyl amidines and aromatic o-diamines without any metal catalyst and additive under mild reaction conditions was developed for the synthesis of benzo-fused bisimidazoles in moderate to excellent yields. Preliminary mechanistic studies suggested that this reaction proceeded by an intermediate of secondary amine derived from 5-iodomethyl imidazole, and NIS played another role of oxidation reagent to promote the formation of a benzimidazole motif.
Collapse
Affiliation(s)
- Shan Li
- Guangxi Key Laboratory of Urban Water Environment, Key laboratory of Regional Ecological Environment Analysis and Pollution Control of West Guangxi, College of Chemistry and Environment Engineering, Baise University, 21 Zhongshan No.2 Road, Baise 533000, China
| | - Lu Lei
- Guangxi Key Laboratory of Urban Water Environment, Key laboratory of Regional Ecological Environment Analysis and Pollution Control of West Guangxi, College of Chemistry and Environment Engineering, Baise University, 21 Zhongshan No.2 Road, Baise 533000, China
| | - Bin Feng
- Guangxi Key Laboratory of Urban Water Environment, Key laboratory of Regional Ecological Environment Analysis and Pollution Control of West Guangxi, College of Chemistry and Environment Engineering, Baise University, 21 Zhongshan No.2 Road, Baise 533000, China
| | - Xiaofeng Liu
- Guangxi Key Laboratory of Urban Water Environment, Key laboratory of Regional Ecological Environment Analysis and Pollution Control of West Guangxi, College of Chemistry and Environment Engineering, Baise University, 21 Zhongshan No.2 Road, Baise 533000, China
| | - Liqing Xian
- Guangxi Key Laboratory of Urban Water Environment, Key laboratory of Regional Ecological Environment Analysis and Pollution Control of West Guangxi, College of Chemistry and Environment Engineering, Baise University, 21 Zhongshan No.2 Road, Baise 533000, China
| | - Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
| |
Collapse
|
5
|
Mikra C, Mitrakas A, Ghizzani V, Katsani KR, Koffa M, Koukourakis M, Psomas G, Protti S, Fagnoni M, Fylaktakidou KC. Effect of Arylazo Sulfones on DNA: Binding, Cleavage, Photocleavage, Molecular Docking Studies and Interaction with A375 Melanoma and Non-Cancer Cells. Int J Mol Sci 2023; 24:1834. [PMID: 36768159 PMCID: PMC9915714 DOI: 10.3390/ijms24031834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
A set of arylazo sulfones, known to undergo N-S bond cleavage upon light exposure, has been synthesized, and their activity in the dark and upon irradiation towards DNA has been investigated. Their interaction with calf-thymus DNA has been examined, and the significant affinity observed (most probably due to DNA intercalation) was analyzed by means of molecular docking "in silico" calculations that pointed out polar contacts, mainly via the sulfonyl moiety. Incubation with plasmid pBluescript KS II revealed DNA cleavage that has been studied over time and concentration. UV-A irradiation considerably improved DNA damage for most of the compounds, whereas under visible light the effect was slightly lower. Moving to in vitro experiments, irradiation was found to slightly enhance the death of the cells in the majority of the compounds. Naphthylazosulfone 1 showed photo-disruptive effect under UV-A irradiation (IC50 ~13 μΜ) followed by derivatives 14 and 17 (IC50 ~100 μΜ). Those compounds were irradiated in the presence of two non-cancer cell lines and were found equally toxic only upon irradiation and not in the dark. The temporal and spatial control of light, therefore, might provide a chance for these novel scaffolds to be useful for the development of phototoxic pharmaceuticals.
Collapse
Affiliation(s)
- Chrysoula Mikra
- Laboratory of Organic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Achilleas Mitrakas
- Laboratory of Cellular Biology and Cell Cycle, Molecular Biology and Genetics Department, Democritus University of Thrace, University Campus, Dragana, 68100 Alexandroupolis, Greece
- Department of Radiotherapy and Oncology, Democritus University of Thrace, University General Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece
| | - Virginia Ghizzani
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V. Le Taramelli 12, 27100 Pavia, Italy
| | - Katerina R. Katsani
- Laboratory of Biochemistry and Molecular Virology, Molecular Biology and Genetics Department, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece
| | - Maria Koffa
- Laboratory of Cellular Biology and Cell Cycle, Molecular Biology and Genetics Department, Democritus University of Thrace, University Campus, Dragana, 68100 Alexandroupolis, Greece
| | - Michael Koukourakis
- Department of Radiotherapy and Oncology, Democritus University of Thrace, University General Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece
| | - George Psomas
- Laboratory of Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V. Le Taramelli 12, 27100 Pavia, Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V. Le Taramelli 12, 27100 Pavia, Italy
| | - Konstantina C. Fylaktakidou
- Laboratory of Organic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
6
|
Galathri EM, Di Terlizzi L, Fagnoni M, Protti S, Kokotos CG. Friedel-Crafts arylation of aldehydes with indoles utilizing arylazo sulfones as the photoacid generator. Org Biomol Chem 2023; 21:365-369. [PMID: 36512428 DOI: 10.1039/d2ob02214a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A versatile, inexpensive and sustainable protocol for the preparation of valuable bis-indolyl methanes via visible light-mediated, metal-free Friedel-Crafts arylation has been developed. The procedure, that exploits the peculiar behavior of arylazo sulfones as non-ionic photoacid generators (PAGs), was applied to the conversion of a variety of aliphatic and aromatic aldehydes into diarylmethanes in good to highly satisfactory yields, employing a low-catalyst loading (0.5 mol%) and irradiation at 456 nm.
Collapse
Affiliation(s)
- Eirini M Galathri
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece.
| | - Lorenzo Di Terlizzi
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece.
| |
Collapse
|
7
|
Mehara J, Koovakattil Surendran A, van Wieringen T, Setia D, Foroutan-Nejad C, Straka M, Rulíšek L, Roithová J. Cationic Gold(II) Complexes: Experimental and Theoretical Study. Chemistry 2022; 28:e202201794. [PMID: 35946558 DOI: 10.1002/chem.202201794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 01/07/2023]
Abstract
Gold(II) complexes are rare, and their application to the catalysis of chemical transformations is underexplored. The reason is their easy oxidation or reduction to more stable gold(III) or gold(I) complexes, respectively. We explored the thermodynamics of the formation of [AuII (L)(X)]+ complexes (L=ligand, X=halogen) from the corresponding gold(III) precursors and investigated their stability and spectral properties in the IR and visible range in the gas phase. The results show that the best ancillary ligands L for stabilizing gaseous [AuII (L)(X)]+ complexes are bidentate and tridentate ligands with nitrogen donor atoms. The electronic structure and spectral properties of the investigated gold(II) complexes were correlated with quantum chemical calculations. The results show that the molecular and electronic structure of the gold(II) complexes as well as their spectroscopic properties are very similar to those of analogous stable copper(II) complexes.
Collapse
Affiliation(s)
- Jaya Mehara
- Department of Spectroscopy and Catalysis, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen (The, Netherlands
| | - Adarsh Koovakattil Surendran
- Department of Spectroscopy and Catalysis, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen (The, Netherlands
| | - Teun van Wieringen
- Department of Spectroscopy and Catalysis, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen (The, Netherlands
| | - Deeksha Setia
- Department of Spectroscopy and Catalysis, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen (The, Netherlands
| | - Cina Foroutan-Nejad
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí. 2, 16610, Prague, Czech Republic
| | - Michal Straka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí. 2, 16610, Prague, Czech Republic
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí. 2, 16610, Prague, Czech Republic
| | - Jana Roithová
- Department of Spectroscopy and Catalysis, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen (The, Netherlands
| |
Collapse
|