1
|
Wang C. Harnessing Halide Ligands and External Electric Fields in Cobalt-Catalyzed Oxidative Cyclometalation: Mechanistic Insights and Reactivity Modulation. J Org Chem 2025; 90:3974-3980. [PMID: 40071524 DOI: 10.1021/acs.joc.4c03058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
This study explores the roles of halide ligands and external electric fields (EEFs) in tuning the reactivity of cobalt-catalyzed oxidative cyclometalation (OCM) of 1,6-enynes, focusing on the concerted mechanism. Using density functional theory (DFT), we investigate how these factors influence key processes in the OCM step, particularly the cleavage of π bonds, the formation of M-C bonds, and the creation of a new C-C bond. Our findings show that polar solvents lower activation barriers, while halide ligands increase them, inhibiting the reaction by weakening π back-donation and reducing orbital overlap. However, strategic application of EEFs counteracts this inhibition, enhancing electron back-donation, stabilizing the transition state, and facilitating bond formation. The Dewar-Chatt-Duncanson (DCD) model, distortion/interaction analysis, and quantum theory of atoms in molecules (QTAIM) delocalization index (DI) calculation reveal that halide ligands reduce electron density on the cobalt center, weakening π-back-donation and raising energy barriers. This work provides key insights into how electronic and geometric factors can be manipulated to optimize the catalytic performance in cobalt-catalyzed synthetic transformations.
Collapse
Affiliation(s)
- Chao Wang
- Lab of Computational Chemistry and Drug Design, Peking University Shenzhen Graduate School, Shenzhen 518055, People's Republic of China
| |
Collapse
|
2
|
Imamoto T. P-Stereogenic Phosphorus Ligands in Asymmetric Catalysis. Chem Rev 2024; 124:8657-8739. [PMID: 38954764 DOI: 10.1021/acs.chemrev.3c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Chiral phosphorus ligands play a crucial role in asymmetric catalysis for the efficient synthesis of useful optically active compounds. They are largely categorized into two classes: backbone chirality ligands and P-stereogenic phosphorus ligands. Most of the reported ligands belong to the former class. Privileged ones such as BINAP and DuPhos are frequently employed in a wide range of catalytic asymmetric transformations. In contrast, the latter class of P-stereogenic phosphorus ligands has remained a small family for many years mainly because of their synthetic difficulty. The late 1990s saw the emergence of novel P-stereogenic phosphorus ligands with their superior enantioinduction ability in Rh-catalyzed asymmetric hydrogenation reactions. Since then, numerous P-stereogenic phosphorus ligands have been synthesized and used in catalytic asymmetric reactions. This Review summarizes P-stereogenic phosphorus ligands reported thus far, including their stereochemical and electronic properties that afford high to excellent enantioselectivities. Examples of reactions that use this class of ligands are described together with their applications in the construction of key intermediates for the synthesis of optically active natural products and therapeutic agents. The literature covered dates back to 1968 up until December 2023, centering on studies published in the late 1990s and later years.
Collapse
Affiliation(s)
- Tsuneo Imamoto
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
3
|
Hu P, Hu L, Li XX, Pan M, Lu G, Li X. Rhodium(I)-Catalyzed Asymmetric Hydroarylative Cyclization of 1,6-Diynes to Access Atropisomerically Labile Chiral Dienes. Angew Chem Int Ed Engl 2024; 63:e202312923. [PMID: 37971168 DOI: 10.1002/anie.202312923] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
Axially chiral open-chained olefins are an underexplored class of atropisomers, whose enantioselective synthesis represents a daunting challenge due to their relatively low racemization barrier. We herein report rhodium(I)-catalyzed hydroarylative cyclization of 1,6-diynes with three distinct classes of arenes, enabling highly enantioselective synthesis of a broad range of axially chiral 1,3-dienes that are conformationally labile (ΔG≠ (rac)=26.6-28.0 kcal/mol). The coupling reactions in each category proceeded with excellent enantioselectivity, regioselectivity, and Z/E selectivity under mild reaction conditions. Computational studies of the coupling of quinoline N-oxide system reveal that the reaction proceeds via initial oxidative cyclization of the 1,6-diyne to give a rhodacyclic intermediate, followed by σ-bond metathesis between the arene C-H bond and the Rh-C(vinyl) bond, with subsequent C-C reductive elimination being enantio-determining and turnover-limiting. The DFT-established mechanism is consistent with the experimental studies. The coupled products of quinoline N-oxides undergo facile visible light-induced intramolecular oxygen-atom transfer, affording chiral epoxides with complete axial-to-central chirality transfer.
Collapse
Affiliation(s)
- Panjie Hu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Lingfei Hu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xiao-Xi Li
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China
| | - Mengxiao Pan
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
4
|
Zhang JW, Liu XJ, Zhang J, Liu JB. Mechanism and origins of cobalt-catalyzed ligand-controlled regiodivergent C-H functionalization of aldehydes with enynes. Dalton Trans 2023; 52:13946-13954. [PMID: 37728124 DOI: 10.1039/d3dt02570e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The influence of the P-M-P bite angle in diphosphine ligands on selectivity has been observed in various catalytic reactions. A better understanding of the ligand bite angle concept is important for the rational design of efficient catalytic systems. In the present work, the mechanism of cobalt-catalyzed C-H functionalization of aldehydes with enynes and how the diphosphine ligands alter regioselectivity were investigated by density functional theory (DFT) calculations. The catalytic cycle is initiated by the oxidative cyclization of enynes rather than the oxidative addition of aldehydes. Regioselectivity arises from competing σ-bond metathesis and migratory insertion steps, in which the steric effects of diphosphine ligands are the dominant factors influencing the activation barriers. The calculations indicate that σ-bond metathesis is more challenging and its feasibility is highly dependent on the ligand bite angle. The improved mechanistic understanding will enable further design of transition-metal-catalyzed selective cyclization reactions.
Collapse
Affiliation(s)
- Jing-Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Xiao-Jun Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Jian Zhang
- Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China.
| | - Jian-Biao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
5
|
Wang T, Guan JX, Tan YX, Tian P. Cobalt-Catalyzed Chemo- and Stereoselective Arylative Carbocyclization of 1,6-Allenynes. Org Lett 2023; 25:5935-5940. [PMID: 37539986 DOI: 10.1021/acs.orglett.3c01958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Different from the well-investigated enynes, transition-metal-catalyzed carbocyclization reactions of allenynes are more attractive as a result of the unique structure and versatile reactivity of allenes. Herein, we report the first cobalt-catalyzed highly chemo- and stereoselective arylative carbocyclization of 1,6-allenynes with arylboronic acids, affording five-membered carbocycles and heterocycles with moderate to high yields, broad substrate scope, and wide functional group compatibility. Moreover, several mechanistic experiments were conducted to gain insight into the reaction process.
Collapse
Affiliation(s)
- Tao Wang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| | - Ji-Xun Guan
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| | - Yun-Xuan Tan
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| | - Ping Tian
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| |
Collapse
|
6
|
Liang RX, Tang HW, Liu JL, Xu JF, Chen LJ, Jia YX. Cobalt-catalyzed enantioselective desymmetrizing reductive cyclization of alkynyl cyclodiketones. Chem Sci 2023; 14:6393-6398. [PMID: 37325142 PMCID: PMC10266457 DOI: 10.1039/d3sc00119a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
A highly enantioselective cobalt-catalyzed desymmetrizing reductive cyclization of alkynyl cyclodiketones has been developed. Under mild reaction conditions by employing HBpin as a reducing agent and ferrocene-based PHOX as a chiral ligand, a series of polycyclic tertiary allylic alcohols bearing contiguous quaternary stereocenters are achieved in moderate to excellent yields with excellent enantioselectivities (up to 99%). Broad substrate scope and high functional group compatibility are observed in this reaction. A CoH-catalyzed pathway involving alkyne hydrocobaltation followed by nucleophilic addition to the C[double bond, length as m-dash]O bond is proposed. Synthetic transformations of the product are conducted to demonstrate the practical utilities of this reaction.
Collapse
Affiliation(s)
- Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology Chaowang Road 18# Hangzhou 310014 China
| | - Heng-Wei Tang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology Chaowang Road 18# Hangzhou 310014 China
| | - Jia-Liang Liu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology Chaowang Road 18# Hangzhou 310014 China
| | - Jian-Feng Xu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology Chaowang Road 18# Hangzhou 310014 China
| | - Ling-Jia Chen
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology Chaowang Road 18# Hangzhou 310014 China
| | - Yi-Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology Chaowang Road 18# Hangzhou 310014 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 P. R. China
| |
Collapse
|
7
|
Kang TM, Wu YW, Zheng WS, Zhang XH, Zhang XG. The halogensulfonylative cyclizations of 1,6-enynes with sodium sulfinate/TBAX for the regioselective synthesis of tetrahydropyridines. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
8
|
Kong S, Zhang M, Wang S, Wu H, Zou H, Huang G. Mechanism and Origins of Diastereo- and Regioselectivities of Palladium-Catalyzed Remote Diborylative Cyclization of Dienes via Chain-Walking Strategy. Chem Asian J 2023; 18:e202201057. [PMID: 36415038 DOI: 10.1002/asia.202201057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/20/2022] [Indexed: 11/24/2022]
Abstract
Density functional theory calculations have been performed to investigate the palladium-catalyzed remote diborylative cyclization of dienes. The computations reveal that the reaction proceeds through a rarely explored Pd(II)/Pd(IV) catalytic cycle, and the formal σ-bond metathesis between the alkylpalladium intermediate and B2 pin2 occurs via the pathway of the B-B oxidative addition/C-B reductive elimination involving the high-valent Pd(IV) species. The diastereoselectivity is determined by the migratory insertion into the Pd-C bond, which is mainly due to the combination of the torsional strain effect, steric repulsion and C-H-O hydrogen-bonding interaction. The steric hindrance around the reacting carbon group in the C-B reductive elimination turns out to be a key factor to provide the driving force of the chain walking of the Pd center to the terminal primary carbon position, enabling the experimentally observed remote regioselectivity.
Collapse
Affiliation(s)
- Shuqi Kong
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Mengyao Zhang
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Shiyu Wang
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Hongli Wu
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Hongyan Zou
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Genping Huang
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
9
|
Wang Y, Gong K, Zhang H, Liu Y, Wei D. Mechanism of a cobalt-catalyzed hydroarylation reaction and origin of stereoselectivity. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00780k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In the present study, the mechanism of a cobalt-catalyzed hydroarylation reaction between N-pyridylindole and 1,6-enynes and the origin of its stereoselectivity have been systematically investigated using the DFT calculation method.
Collapse
Affiliation(s)
- Yang Wang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, Henan Province, 450002, PR China
| | - Kaili Gong
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, Henan Province, 450002, PR China
| | - Han Zhang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, Henan Province, 450002, PR China
| | - Yue Liu
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, Henan Province, 450002, PR China
| | - Donghui Wei
- College of Chemistry (Center of Green Catalysis), Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan Province, 450001, PR China
| |
Collapse
|