1
|
Chakraborty S, Singha Mohapatra A, Paul ND. Hydrogen-Bond-Assisted Ru(III)-Catalyzed C-C Bond Activation in 1,3-Dicarbonyls: A Direct Route to Multi-Substituted Pyrroles. J Org Chem 2025; 90:5281-5291. [PMID: 40191886 DOI: 10.1021/acs.joc.5c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Unprecedented CO-Cα bond cleavage of 1,3-dicarbonyls and enaminone, catalyzed by a well-defined Ru(III)-complex (1) featuring a redox-active triamine ligand (L1) with a free -NH2 arm, opening a new route to accessing substituted pyrroles with broad substrate scope and functional group tolerance in good isolated yields via multicomponent coupling of 1,3-dicarbonyls, amines, and diol, is reported. The hydrogen bonding interaction offered by 1 facilitates the formation of critical reaction intermediates, favoring the formation of pyrroles.
Collapse
Affiliation(s)
- Santana Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Arijit Singha Mohapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
2
|
Wang T, Xu Y, Du M, Hu Z, Liu L. Synthesis, Characterization and Application of NNN Pincer Manganese Complexes with Pyrazole Framework in α-Alkylation Reaction. Molecules 2025; 30:1465. [PMID: 40286071 PMCID: PMC11990691 DOI: 10.3390/molecules30071465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 04/29/2025] Open
Abstract
A series of novel NNN pincer manganese complexes based on pyrazole skeleton 4 were efficiently synthesized in a two-step process. All of the new complexes were fully characterized by 1H, 13C NMR spectra. Furthermore, the molecular structures of complexes 4a and 4c were also determined by X-ray single-crystal diffraction. The manganese(I) catalysts obtained showed efficient catalytic activity in the α-alkylation reaction of ketones with alcohols. Under optimal reaction conditions, the expected products were procured with moderate to high yields.
Collapse
Affiliation(s)
- Tao Wang
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Yongli Xu
- College of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Mengxin Du
- College of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Zhiyuan Hu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Lantao Liu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| |
Collapse
|
3
|
Chakraborty S, Singha Mohapatra A, Saha S, Mandal S, Paul ND. Ligand Assisted Co(II)-Catalyzed Multicomponent Synthesis of Substituted Pyrroles and Pyridines. Chem Asian J 2025; 20:e202401038. [PMID: 39714368 DOI: 10.1002/asia.202401038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/23/2024] [Accepted: 12/22/2024] [Indexed: 12/24/2024]
Abstract
Herein, we describe a sustainable Co(II)-catalyzed synthesis of pyrroles and pyridines. Using a Co(II)-catalyst [CoII 2(La)2Cl2] (1 a) bearing redox-active 2-(phenyldiazenyl)-1,10-phenanthroline) (La) scaffold, various substituted pyrroles and pyridines were synthesized in good yields, taking alcohol as one of the primary feedstock. Pyrroles were synthesized by the equimolar reaction of 2-amino and secondary alcohols. A series of 2,4,6-substituted symmetrical pyridines were prepared via a three-component reaction of NH4OAc with 1 : 2.2 molar primary and secondary alcohols, respectively. Unsymmetrically substituted 2,4,6-trisubstituted, 2,4,5,6-tetrasubstituted, and 2,3,4,5,6-pentasubstituted pyridines were achieved via a multi-component coupling reaction of alcohols and NH4OAc. Catalyst 1 a showed encouraging results during the gram-scale synthesis of these N-heterocycles. Mechanistic investigation revealed synergistic involvement of cobalt metal and the ligand during the catalytic reactions.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah, 711103, India
| | - Arijit Singha Mohapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah, 711103, India
| | - Subhangi Saha
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah, 711103, India
| | - Sutanuva Mandal
- Department of Chemistry, Banwarilal Bhalotia College, Ushagram, Asansol, West Bengal, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah, 711103, India
| |
Collapse
|
4
|
Yin Y, Xiao Y, Yang X, Li H, Du J, Duan W, Yu L. Palladium-catalyzed N-arylation of (hetero)aryl chlorides with pyrroles and their analogues. Org Biomol Chem 2025; 23:1581-1587. [PMID: 39760244 DOI: 10.1039/d4ob01907e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
We present a mild and efficient method for the arylation of N-H heteroarenes using a low-loading Pd/keYPhos catalyst (0.8 mol%). This approach employs inexpensive and structurally diverse aryl chlorides as electrophiles in reactions with indoles, pyrroles, and carbazole, enabling the construction of a wide range of N-arylated products. The method exhibits excellent functional group tolerance and is suitable for gram-scale synthesis. Furthermore, the relatively inert Ar-Cl bond allows for late-stage functionalization of pharmaceuticals and stepwise coupling reactions, providing a complementary strategy for the N-arylation of N-H heteroarenes.
Collapse
Affiliation(s)
- Ying Yin
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China.
| | - Yuxuan Xiao
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China.
| | - Xun Yang
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China.
| | - Haiyan Li
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China.
| | - Jiahui Du
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China.
| | - Wengui Duan
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China.
| | - Lin Yu
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China.
| |
Collapse
|
5
|
Yao XR, Jia MZ, Miao XL, Yu SK, Chen YR, Pan JQ, Zhang J. Photocatalyzed Oxidative Tandem Reaction Mediated by Bipyridinium for Multifunctional Derivatization of Alcohols. CHEMSUSCHEM 2024; 17:e202301911. [PMID: 38477175 DOI: 10.1002/cssc.202301911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/05/2024] [Accepted: 03/11/2024] [Indexed: 03/14/2024]
Abstract
The multifunctional derivatization of alcohols has been achieved by the bipyridinium-based conjugated small molecule photocatalysts with redox center and Lewis acid site. Besides exhibiting high activity in the selective generation of aldehydes/ketones, acids from alcohols through solvent modulation, this system renders the first selective synthesis of esters via an attractive cross-coupling pattern, whose reaction route is significantly different from the traditional condensation of alcohols and acids or esterification from hemiacetals. Following the oxidization of alcohol to aldehyde via bipyridinium-mediated electron and energy transfer, the Lewis acid site of bipyridinium then activates the aldehyde and methanol to obtain the acetal, which further reacts with methanol to generate ester. This method not only demonstrates a clear advantage of bipyridinium in diverse catalytic activities, but also paves the way for designing efficient multifunctional small molecule photocatalysts. This metal- and additive-free photocatalytic esterification reaction marks a significant advancement towards a more environmentally friendly, cost-effective and green sustainable approach, attributed to the utilization of renewable substrate alcohol and the abundant, low-cost air as the oxidant. The mildness of this esterification reaction condition provides a more suitable alternative for large-scale industrial production of esters.
Collapse
Affiliation(s)
- Xin-Rong Yao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Meng-Ze Jia
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Xiao-Li Miao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Shi-Kai Yu
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Yun-Rui Chen
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Jia-Qi Pan
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Jie Zhang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| |
Collapse
|
6
|
Mondal S, Chakraborty S, Khanra S, Chakraborty S, Pal S, Brandão P, Paul ND. A Phosphine-Free Air-Stable Mn(II)-Catalyst for Sustainable Synthesis of Quinazolin-4(3 H)-ones, Quinolines, and Quinoxalines in Water. J Org Chem 2024; 89:5250-5265. [PMID: 38554095 DOI: 10.1021/acs.joc.3c02579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
The synthesis, characterization, and catalytic application of a new phosphine-free, well-defined, water-soluble, and air-stable Mn(II)-catalyst [Mn(L)(H2O)2Cl](Cl) ([1]Cl) featuring a 1,10-phenanthroline based tridentate pincer ligand, 2-(1H-pyrazol-1-yl)-1,10-phenanthroline (L), in dehydrogenative functionalization of alcohols to various N-heterocycles such as quinazolin-4(3H)-ones, quinolines, and quinoxalines are reported here. A wide array of multisubstituted quinazolin-4(3H)-ones were prepared in water under air following two pathways via the dehydrogenative coupling of alcohols with 2-aminobenzamides and 2-aminobenzonitriles, respectively. 2-Aminobenzyl alcohol and ketones bearing active methylene group were used as coupling partners for synthesizing quinoline derivatives, and various quinoxaline derivatives were prepared by coupling vicinal diols and 1,2-diamines. In all cases, the reaction proceeded smoothly using our Mn(II)-catalyst [1]Cl in water under air, affording the desired N-heterocycles in satisfactory yields starting from cheap and readily accessible precursors. Gram-scale synthesis of the compounds indicates the industrial relevance of our synthetic strategy. Control experiments were performed to understand and unveil the plausible reaction mechanism.
Collapse
Affiliation(s)
- Sucheta Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Botanic Garden, Howrah, Shibpur 711103, India
| | - Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Botanic Garden, Howrah, Shibpur 711103, India
| | - Subhankar Khanra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Botanic Garden, Howrah, Shibpur 711103, India
| | - Santana Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Botanic Garden, Howrah, Shibpur 711103, India
| | - Shrestha Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Botanic Garden, Howrah, Shibpur 711103, India
| | - Paula Brandão
- Departamento de Química/CICECO, Instituto de Materiais de Aveiro, Universidade de Aveiro, Aveiro 3810-193, Portugal
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Botanic Garden, Howrah, Shibpur 711103, India
| |
Collapse
|
7
|
Li Z, Zhang H, Zhao L, Ma Y, Wu Q, Ren H, Lin Z, Zheng J, Yu X. Metal-free β,γ-C(sp 3)-H difunctionalization of propanols: DMP-initiated asymmetric spirocyclopropanation. Chem Commun (Camb) 2024; 60:3579-3582. [PMID: 38470069 DOI: 10.1039/d4cc00116h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
A DMP-initiated metal-free effective β,γ-asymmetric spirocyclopropanation of propanols strategy using oxidative iminium activation is described. This process has been realized by a synergistic amine-catalyzed one-pot cascade oxidation-Michael addition cyclopropanation for "one-pot" access to various spirocyclopropyl propionaldehydes/propanols from diverse 3-arylpropanols and α-brominated active methylene compounds under mild conditions and with high enantioselectivity (ee up to >99%).
Collapse
Affiliation(s)
- Zheyao Li
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy and State Key Laboratory of Bioengineering Reactors, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Huiwen Zhang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy and State Key Laboratory of Bioengineering Reactors, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Lin Zhao
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy and State Key Laboratory of Bioengineering Reactors, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Yueyue Ma
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 West Waihuan Road, Guangzhou 510006, Guangdong, China.
| | - Qiufang Wu
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy and State Key Laboratory of Bioengineering Reactors, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Haosong Ren
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy and State Key Laboratory of Bioengineering Reactors, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Zhongren Lin
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy and State Key Laboratory of Bioengineering Reactors, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Jun Zheng
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy and State Key Laboratory of Bioengineering Reactors, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Xinhong Yu
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy and State Key Laboratory of Bioengineering Reactors, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
8
|
Guin AK, Pal S, Chakraborty S, Chakraborty S, Paul ND. Oxygen Dependent Switchable Selectivity during Ruthenium Catalyzed Selective Synthesis of C3-Alkylated Indoles and Bis(indolyl)methanes. J Org Chem 2023. [PMID: 38015094 DOI: 10.1021/acs.joc.3c01191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Herein, we report a ligand-centered redox-controlled oxygen-dependent switchable selectivity during ruthenium-catalyzed selective synthesis of C3-alkylated indoles and bis(indolyl)methanes (BIMs). A wide variety of C3-alkylated indoles and BIMs were prepared selectively in moderate to good isolated yields by coupling a wide variety of indoles and alcohols, catalyzed by a well-defined, air-stable, and easy-to-prepare Ru(II)-catalyst (1a) bearing a redox-active tridentate pincer (L1a). Catalyst 1a efficiently catalyzed the C3-alkylation of indoles under an argon atmosphere while, under an oxygen environment, exclusively producing the BIMs. A few drug molecules containing BIMs were also synthesized efficiently. 1a exhibited excellent chemoselectivity with alcohols containing internal carbon-carbon double bonds. Mechanistic investigation revealed that the coordinated azo-aromatic ligand actively participates during the catalysis. During the dehydrogenation of alcohols, the azo-moiety of the ligand stores the hydrogen removed from the alcohols and subsequently transfers the hydrogen to the alkylideneindolenine intermediate, forming the C3-alkylated indoles. While under an oxygen environment, the transfer of hydrogen from the ligand scaffold to the molecular oxygen generates H2O2, leaving no scope for hydrogenation of the alkylideneindolenine intermediate, rather than it undergoing 1,4-Michael-type addition forming the BIMs.
Collapse
Affiliation(s)
- Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhasree Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Santana Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
9
|
Guin AK, Pal S, Chakraborty S, Chakraborty S, Paul ND. N-Alkylation of Amines by C1-C10 Aliphatic Alcohols Using A Well-Defined Ru(II)-Catalyst. A Metal-Ligand Cooperative Approach. J Org Chem 2023; 88:5944-5961. [PMID: 37052217 DOI: 10.1021/acs.joc.3c00313] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
A Ru(II)-catalyzed efficient and selective N-alkylation of amines by C1-C10 aliphatic alcohols is reported. The catalyst [Ru(L1a)(PPh3)Cl2] (1a) bearing a tridentate redox-active azo-aromatic pincer, 2-((4-chlorophenyl)diazenyl)-1,10-phenanthroline (L1a) is air-stable, easy to prepare, and showed wide functional group tolerance requiring only 1.0 mol % (for N-methylation and N-ethylation) and 0.1 mol % of catalyst loading for N-alkylation with C3-C10 alcohols. A wide array of N-methylated, N-ethylated, and N-alkylated amines were prepared in moderate to good yields via direct coupling of amines and alcohols. 1a efficiently catalyzes the N-alkylation of diamines selectively. It is even suitable for synthesizing N-alkylated diamines using (aliphatic) diols producing the tumor-active drug molecule MSX-122 in moderate yield. 1a showed excellent chemo-selectivity during the N-alkylation using oleyl alcohol and monoterpenoid β-citronellol. Control experiments and mechanistic investigations revealed that the 1a-catalyzed N-alkylation reactions proceed via a borrowing hydrogen transfer pathway where the hydrogen removed from the alcohol during the dehydrogenation step is stored in the ligand backbone of 1a, which in the subsequent steps transferred to the in situ formed imine intermediate to produce the N-alkylated amines.
Collapse
Affiliation(s)
- Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhasree Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Santana Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
10
|
Pal S, Das S, Chakraborty S, Khanra S, Paul ND. Zn(II)-Catalyzed Multicomponent Sustainable Synthesis of Pyridines in Air. J Org Chem 2023; 88:3650-3665. [PMID: 36854027 DOI: 10.1021/acs.joc.2c02867] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Herein, we report a Zn(II)-catalyzed solvent-free sustainable synthesis of tri- and tetra-substituted pyridines using alcohols as the primary feedstock and NH4OAc as the nitrogen source. Using a well-defined air-stable Zn(II)-catalyst, 1a, featuring a redox-active tridentate azo-aromatic pincer, 2-((4-chlorophenyl)diazenyl)-1,10-phenanthroline (La), a wide variety of unsymmetrical 2,4,6-substituted pyridines were prepared by three-component coupling of primary and secondary alcohols with NH4OAc. Catalyst 1a is equally compatible with the four-component coupling. Unsymmetrical 2,4,6-substituted pyridines were also prepared via a four-component coupling of a primary alcohol with two different secondary alcohols and NH4OAc. A series of tetra-substituted pyridines were prepared up to 67% yield by coupling primary and secondary alcohols with 1-phenylpropan-1-one or 1,2-diphenylethan-1-one and NH4OAc. The 1a-catalyzed reactions also proceeded efficiently upon replacing the secondary alcohols with the corresponding ketones, producing the desired tri- and tetra-substituted pyridines in higher yields in a shorter reaction time. A few control experiments were performed to unveil the mechanistic aspects, which indicates that the active participation of the aryl-azo ligand during catalysis enables the Zn(II)-complex to act as an efficient catalyst for the present multicomponent reactions. Aerial oxygen acts as an oxidant during the Zn(II)-catalyzed dehydrogenation of alcohols, producing H2O and H2O2 as byproducts.
Collapse
Affiliation(s)
- Subhasree Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Siuli Das
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhankar Khanra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
11
|
Liu T, Wang L, Wu K, Wang Q, Yu Z. Mono- and multinuclear pincer-type Ru(II) complex catalysts and their catalytic applications. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
12
|
Phipps CA, Hofsommer DT, Zirilli CD, Duff BG, Mashuta MS, Buchanan RM, Grapperhaus CA. Metal-Ligand Cooperativity Promotes Reversible Capture of Dilute CO 2 as a Zn(II)-Methylcarbonate. Inorg Chem 2023; 62:2751-2759. [PMID: 36715745 DOI: 10.1021/acs.inorgchem.2c03868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this study, a series of thiosemicarbazonato-hydrazinatopyridine metal complexes were evaluated as CO2 capture agents. The complexes incorporate a non-coordinating, basic hydrazinatopyridine nitrogen in close proximity to a Lewis acidic metal ion allowing for metal-ligand cooperativity. The coordination of various metal ions with (diacetyl-2-(4-methyl-thiosemicarbazone)-3-(2-hydrazinopyridine) (H2L1) yielded ML1 (M = Ni(II), Pd(II)), ML1(CH3OH) (M = Cu(II), Zn(II)), and [ML1(PPh3)2]BF4 (M = Co(III)) complexes. The ML1(CH3OH) complexes reversibly capture CO2 with equilibrium constants of 88 ± 9 and 6900 ± 180 for Cu(II) and Zn(II), respectively. Ligand effects were evaluated with Zn(II) through variation of the 4-methyl-thiosemicarbazone with 4-ethyl (H2L2), 4-phenethyl (H2L3), and 4-benzyl (H2L4) derivatives. The equilibrium constant for CO2 capture increased to 11,700 ± 300, 15,000 ± 400, and 35,000 ± 200 for ZnL2(MeOH), ZnL3(MeOH), and ZnL4(MeOH), respectively. Quantification of ligand basicity and metal ion Lewis acidity shows that changes in CO2 capture affinity are largely associated with ligand basicity upon substitution of Cu(II) with Zn(II), while variation of the thiosemicarbazone ligand enhances CO2 affinity by tuning the metal ion Lewis acidity. Overall, the Zn(II) complexes effectively capture CO2 from dilute sources with up to 90%, 86%, and 65% CO2 capture efficiency from 400, 1000, and 2500 ppm CO2 streams.
Collapse
Affiliation(s)
- Christine A Phipps
- Department of Chemistry, University of Louisville, 2320 S. Brook St, Louisville, Kentucky 40292, United States
| | - Dillon T Hofsommer
- Department of Chemistry, University of Louisville, 2320 S. Brook St, Louisville, Kentucky 40292, United States
| | - Calian D Zirilli
- Department of Chemistry, University of Louisville, 2320 S. Brook St, Louisville, Kentucky 40292, United States
| | - Bailee G Duff
- Department of Chemistry, University of Louisville, 2320 S. Brook St, Louisville, Kentucky 40292, United States
| | - Mark S Mashuta
- Department of Chemistry, University of Louisville, 2320 S. Brook St, Louisville, Kentucky 40292, United States
| | - Robert M Buchanan
- Department of Chemistry, University of Louisville, 2320 S. Brook St, Louisville, Kentucky 40292, United States
| | - Craig A Grapperhaus
- Department of Chemistry, University of Louisville, 2320 S. Brook St, Louisville, Kentucky 40292, United States
| |
Collapse
|
13
|
Mondal R, Guin AK, Pal S, Mondal S, Paul ND. Sustainable synthesis of pyrazoles using alcohols as the primary feedstock by an iron catalyzed tandem C–C and C–N coupling approach. Org Chem Front 2022. [DOI: 10.1039/d2qo01196d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report two new efficient iron-catalyzed synthetic strategies for multicomponent synthesis of tri-substituted pyrazoles using biomass-derived alcohols as the primary feedstock.
Collapse
Affiliation(s)
- Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhasree Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Sucheta Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D. Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|