1
|
Nian S, Wu X, Chen A, Lei Z, Song Q, Huang Q, Liu M, Lu S, Chen J, Wei D. Electrochemical Cascade Reactions of 1,2,3-Benzotriazinones with Alkynes to Assemble 3,4-Dihydroisoquinolin-1(2 H)-ones. J Org Chem 2025; 90:5862-5870. [PMID: 40257103 DOI: 10.1021/acs.joc.5c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
An unexpected electrochemical cascade reaction of 1,2,3-benzotriazinones with alkynes to assemble 3,4-dihydroisoquinolin-1(2H)-ones has been developed, which avoids the use of pressurized H2, any metal catalysts, and stoichiometric redox agents. This route tolerates a wide range of functional groups in both reactants and can be performed under an air atmosphere. The process of continuous cathodic reduction was demonstrated by control experiments and cyclic voltammograms. Moreover, the gram-scale reaction confirmed the potential of this environmentally benign method for practical applications.
Collapse
Affiliation(s)
- Sanfei Nian
- Key Lab of Process Analysis and Control of Sichuan Universities, College of Materials and Chemical Engineering, Yibin University, Yibin, Sichuan 644000, China
| | - Xudong Wu
- Key Lab of Process Analysis and Control of Sichuan Universities, College of Materials and Chemical Engineering, Yibin University, Yibin, Sichuan 644000, China
| | - Anwu Chen
- Key Lab of Process Analysis and Control of Sichuan Universities, College of Materials and Chemical Engineering, Yibin University, Yibin, Sichuan 644000, China
| | - Zhiming Lei
- Key Lab of Process Analysis and Control of Sichuan Universities, College of Materials and Chemical Engineering, Yibin University, Yibin, Sichuan 644000, China
| | - Qiuyue Song
- Key Lab of Process Analysis and Control of Sichuan Universities, College of Materials and Chemical Engineering, Yibin University, Yibin, Sichuan 644000, China
| | - Quan Huang
- Key Lab of Process Analysis and Control of Sichuan Universities, College of Materials and Chemical Engineering, Yibin University, Yibin, Sichuan 644000, China
| | - Min Liu
- Key Lab of Process Analysis and Control of Sichuan Universities, College of Materials and Chemical Engineering, Yibin University, Yibin, Sichuan 644000, China
| | - Shengming Lu
- Key Lab of Process Analysis and Control of Sichuan Universities, College of Materials and Chemical Engineering, Yibin University, Yibin, Sichuan 644000, China
| | - Jinkang Chen
- Zhejiang Jiuzhou Pharmaceutical Co., Ltd., Taizhou, Zhejiang 318000, China
| | - Daijing Wei
- YiBin Center of Food and Drug Inspection, 19 Yong'an Road, Yibin 644000, China
| |
Collapse
|
2
|
Korivi R, Rana J, Baskar B, Mannathan S. Synthesis of N-Aryl and N-Alkyl Phthalimides via Denitrogenative Cyanation of 1,2,3-Benzotriazin-4(3 H)-ones. J Org Chem 2025; 90:3252-3256. [PMID: 39982767 DOI: 10.1021/acs.joc.4c02823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
An efficient metal-free approach for synthesizing N-aryl- and N-alkyl phthalimide derivatives from 1,2,3-benzotriazin-4(3H)-ones is described. The reaction likely proceeds via a denitrogenative cyanation pathway, utilizing TMSCN as the cyanide source. This method is straightforward as well as scalable and supports a wide range of substrates with high functional group tolerance, yielding diverse phthalimide derivatives in good to excellent yields. The utility of this method is further highlighted by the successful synthesis of a tyrosinase inhibitor analogue in good yield.
Collapse
Affiliation(s)
- Ramaraju Korivi
- Department of Chemistry, SRM University-AP, Amaravati 522240, Andhra Pradesh, India
| | - Jagannath Rana
- Department of Chemistry, SRM University-AP, Amaravati 522240, Andhra Pradesh, India
| | - Baburaj Baskar
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chengalpet - 603 203, Tamil Nadu, India
| | | |
Collapse
|
3
|
Li H, Zhang Y, Han F, Zhang Z, Yin M, Han P, Jing L. Photoredox Catalyzed Tandem Denitrogenative [4 + 2] Annulation of 1,2,3-Benzotriazin-4(3H)-ones with Terminal Olefins. J Org Chem 2024; 89:16043-16048. [PMID: 39402890 DOI: 10.1021/acs.joc.4c02043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
The dihydroisoquinolones skeleton is ubiquitous in natural products and biological molecules. Reported strategies for constructing dihydroisoquinolones usually require noble metal catalysts or stoichiometric oxidants, which limit their wide applications. Herein, we developed a photoredox catalyzed tandem denitrogenative [4 + 2] annulation reaction of 1,2,3-benzotriazin-4(3H)-ones with terminal olefins. A variety of dihydroisoquinolones can be accessed in moderate to excellent yield. This protocol features high atom-economy, mild reaction conditions, and is external oxidant-free, enabling the synthesis of various substituted dihydroisoquinolones.
Collapse
Affiliation(s)
- Haiqiong Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
- Panzhihua No. 3 Senior High School, Panzhihua 617000, P. R. China
| | - Yu Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Fen Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Zhengbing Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Mengyun Yin
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Pan Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Linhai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| |
Collapse
|
4
|
Bao MZ, Pan XY, Wu WR, Xiao L, Liu J, Liu XG, Zhang SS, Zhao L. Metal-catalyzed divergent synthesis from ylides with 3-arylbenzo[ d][1,2,3]triazin-4(3 H)-ones. Chem Commun (Camb) 2024; 60:12928-12931. [PMID: 39421938 DOI: 10.1039/d4cc04309j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The present work reveals a new metal-catalyzed synthetic reaction involving 1,2,3-benzotriazinones with carbonyl sulfoxonium ylide and iodonium ylide, resulting in divergent products. Within this catalytic system, 3-phenylbenzo[d][1,2,3]triazin-4(3H)-one derivatives undergo C-H alkylation processes facilitated by a Cp*Rh(III) catalyst when combined with a carbonyl sulfoxonium ylide. On the other hand, when iodonium ylide substrates are used, they undergo an alkenylation reaction facilitated by a Cp*Ir(III) catalyst. In addition, hydrazone products are produced by synthesizing iodonium ylide substrates with the use of a copper catalyst. These transformations demonstrate mild reaction conditions, a wide range of substrates, and excellent compatibility with various functional groups. The strategy and tactics utilized have been effectively implemented on a significant scale.
Collapse
Affiliation(s)
- Mei-Zhu Bao
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Xiao-Ying Pan
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China.
| | - Wen-Rong Wu
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Lin Xiao
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Jidan Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, P. R. China
| | - Xu-Ge Liu
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| | - Shang-Shi Zhang
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Limin Zhao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China.
| |
Collapse
|
5
|
Wang H, Luo Q, Li JH, Sun B. Ru(II)-Catalyzed C-H Amination of 1,2,3-Benzotriazinones with Azide Compounds. J Org Chem 2024; 89:12249-12254. [PMID: 39116027 DOI: 10.1021/acs.joc.4c01182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
A Ru(II)-catalyzed directed C-H amination of 1,2,3-benzotriazinones with azide compounds has been reported. The reaction has a wide substrate scope of organic azides with good results and represents a useful pathway to the construction of versatile heterocyclic amino products. In addition, the method can be used for the phthalazinones, highlighting the synthetic practicability of the strategy.
Collapse
Affiliation(s)
- Hanchi Wang
- College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Quanjian Luo
- College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jin-Heng Li
- College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Bo Sun
- College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
6
|
García-Lacuna J, Baumann M. Continuous Flow Synthesis of Benzotriazin-4(3 H)-ones via Visible Light Mediated Nitrogen-Centered Norrish Reaction. Org Lett 2024; 26:2371-2375. [PMID: 38466090 PMCID: PMC10985655 DOI: 10.1021/acs.orglett.4c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/12/2024]
Abstract
We report a new protocol for the synthesis of substituted benzotriazin-4(3H)-ones which are underrepresented heterocyclic scaffolds with important pharmacological properties. Our method exploits acyclic aryl triazine precursors that undergo a photocyclization reaction upon exposure to violet light (420 nm). Continuous flow reactor technology is exploited to afford excellent yields in only 10 min residence time with no additives or photocatalysts needed. The underlying reaction mechanism appears to be based on an unprecedented variation of the classical Norrish type II reaction with concomitant fragmentation and formation of N-N bonds. Scalability, process robustness, and green credentials of this intriguing transformation are highlighted.
Collapse
Affiliation(s)
- Jorge García-Lacuna
- University College Dublin, School of Chemistry, Science Centre South, Dublin 4, Ireland
| | - Marcus Baumann
- University College Dublin, School of Chemistry, Science Centre South, Dublin 4, Ireland
| |
Collapse
|
7
|
Maqueda-Zelaya F, Aceña JL, Merino E, Vaquero JJ, Sucunza D. 1,2,3-Benzotriazine Synthesis by Heterocyclization of p-Tosylmethyl Isocyanide Derivatives. J Org Chem 2023; 88:14131-14139. [PMID: 37721789 PMCID: PMC10563127 DOI: 10.1021/acs.joc.3c01675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Indexed: 09/19/2023]
Abstract
An efficient methodology to form 4-alkoxy- and 4-aryloxybenzo[d][1,2,3]triazines via an intramolecular heterocyclization of 1-azido-2-[isocyano(p-tosyl)methyl]benzenes under basic conditions has been developed. DFT calculations have been performed to further understand the mechanism of this heterocyclization, which occurs in good to excellent yields with a broad scope.
Collapse
Affiliation(s)
- Francisco Maqueda-Zelaya
- Departamento de Química Orgánica
y Química Inorgánica, Instituto de Investigación
Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, IRYCIS, 28805, Alcalá
deHenares, Madrid, Spain
| | - José Luis Aceña
- Departamento de Química Orgánica
y Química Inorgánica, Instituto de Investigación
Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, IRYCIS, 28805, Alcalá
deHenares, Madrid, Spain
| | - Estíbaliz Merino
- Departamento de Química Orgánica
y Química Inorgánica, Instituto de Investigación
Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, IRYCIS, 28805, Alcalá
deHenares, Madrid, Spain
| | - Juan J. Vaquero
- Departamento de Química Orgánica
y Química Inorgánica, Instituto de Investigación
Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, IRYCIS, 28805, Alcalá
deHenares, Madrid, Spain
| | - David Sucunza
- Departamento de Química Orgánica
y Química Inorgánica, Instituto de Investigación
Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, IRYCIS, 28805, Alcalá
deHenares, Madrid, Spain
| |
Collapse
|
8
|
Chen J, Xiao L, Qi L. Electrochemical annulation of 1,2,3-benzotriazinones with alkynes to access isoquinolin-1(2 H)-ones. Org Biomol Chem 2023; 21:7295-7299. [PMID: 37646442 DOI: 10.1039/d3ob01161e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
An eco-friendly approach for electrochemical radical cascade annulation of 1,2,3-benzotriazinones with alkynes is described. Under catalyst-free and external reductant-free electrolysis conditions, a range of isoquinolin-1(2H)-ones were obtained in moderate to good yields. Cyclic voltammetry and control studies suggest that the reaction proceeds via a radical pathway. Furthermore, this approach could be easily scaled up.
Collapse
Affiliation(s)
- JinKang Chen
- College of Pharmaceutical Sciences, Jiangsu Vocational College of Medicine, Yancheng 224000, China.
| | - Linxia Xiao
- College of Pharmaceutical Sciences, Jiangsu Vocational College of Medicine, Yancheng 224000, China.
| | - Liang Qi
- College of Pharmaceutical Sciences, Jiangsu Vocational College of Medicine, Yancheng 224000, China.
| |
Collapse
|
9
|
Wang H, Ding W, Zou G. Mechanoredox/Nickel Co-Catalyzed Cross Electrophile Coupling of Benzotriazinones with Alkyl (Pseudo)halides. J Org Chem 2023; 88:12891-12901. [PMID: 37615491 DOI: 10.1021/acs.joc.3c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
An air-tolerant mechanoredox/nickel cocatalyzed cross electrophile coupling of benzotriazinones with alkyl (pseudo)halides is developed by liquid-assisting grinding in the presence of manganese powders and strontium titanate as a reductant and a cocatalyst, respectively. Mechanical activation of metal surfaces via ball milling eliminates the chemical activator for manganese, while mechanoredox cocatalysis of strontium titanate remarkably improves the aryl/alkyl cross electrophile coupling via piezoelectricity-mediated radical generation from alkyl halides. Both benzotriazinones and alkyl (pseudo)halides display reactivities in the mechanoredox/nickel cocatalysis different from those of conventional thermal chemistry in solution. The scope of the reaction is demonstrated with 26 examples, showing a high chemoselectivity of bromides vs chlorides.
Collapse
Affiliation(s)
- Huimin Wang
- School of Chemistry & Molecular Engineering, East China University of Science & Technology, 130 Meilong Rd, Shanghai 200237, P.R. China
| | - Wenbin Ding
- School of Chemistry & Molecular Engineering, East China University of Science & Technology, 130 Meilong Rd, Shanghai 200237, P.R. China
| | - Gang Zou
- School of Chemistry & Molecular Engineering, East China University of Science & Technology, 130 Meilong Rd, Shanghai 200237, P.R. China
| |
Collapse
|
10
|
Li S, Li Y, Zhu R, Bai J, Shen Y, Pan M, Li W. Synthesis of ortho-Methylated Benzamides via Palladium-Catalyzed Denitrogenative Cross-Coupling Reaction of [1,2,3]-Benzotriazin-4(3 H)-ones with DABAL-Me 3. Org Lett 2023. [PMID: 37440414 DOI: 10.1021/acs.orglett.3c01745] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
We herein developed a palladium-catalyzed reaction of [1,2,3]-benzotriazin-4(3H)-ones with DABAL-Me3 [bis(trimethylaluminum)-1,4-diazabicyclo[2.2.2]octane adduct], a cheap, stable, and solid organoaluminum reagent. In the presence of Pd(OAc)2/XantPhos as a commercially available catalyst, [1,2,3]-benzotriazin-4(3H)-ones underwent denitrogenative coupling with DABAL-Me3 to afford a wide array of N-aryl amides derived from ortho-methylated carboxylic acids. Under the same catalytic conditions, ortho-ethylation of [1,2,3]-benzotriazin-4(3H)-ones could also be achieved by using triethylaluminum.
Collapse
Affiliation(s)
- Shangzhang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Yang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Riqian Zhu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Jin Bai
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Yue Shen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Mengni Pan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Wanfang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| |
Collapse
|
11
|
Korivi R, Madasamy K, Sureshbabu P, Mannathan S. Convenient Synthesis of Salicylanilide Sulfonates from 1,2,3-Benzotriazin-4(3 H)-ones and Organosulfonic Acids via Denitrogenative Cross-Coupling. ACS OMEGA 2023; 8:18306-18311. [PMID: 37251178 PMCID: PMC10210227 DOI: 10.1021/acsomega.3c02165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023]
Abstract
An efficient and straightforward approach to synthesize salicylanilide aryl and alkyl sulfonates from 1,2,3-benzotriazin-4(3H)-ones and organosulfonic acids is described. This protocol is operationally simple and scalable, exhibits a broad substrate scope with high functional group tolerance, and affords the desired products in good to high yield. Application of the reaction is also demonstrated by converting the desired product to synthetically useful salicylamides in high yields.
Collapse
|
12
|
Zhou Y, Zhang B, Dong J, Li J, Yang S, Ye L. Assembly of Benzo[ c][1,2]dithiol-3-ones via Acid-Promoted Denitrogenative Transannulation of Benzotriazinones. Org Lett 2022; 24:9012-9016. [PMID: 36464857 DOI: 10.1021/acs.orglett.2c03638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An expedient synthesis of benzo[c][1,2]dithiol-3-ones via metal-free denitrogenative transannulation of benzotriazinones is developed, which represents the first example of acid-mediated heteroannulation of benzotriazinones. This newly discovered reactivity of benzotriazinones enables the streamline synthesis of diverse benzo[c][1,2]dithiol-3-ones in decent yields by using sodium sulfide as the sulfur source under simple reaction conditions.
Collapse
Affiliation(s)
- Yao Zhou
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Bohao Zhang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Junjie Dong
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Jingnan Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Shanhong Yang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Likun Ye
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| |
Collapse
|