1
|
Liu C, Voskressensky LG, Van der Eycken EV. Recent Advances in the Synthesis of Peptidomimetics via Ugi Reactions. Chemistry 2024; 30:e202303597. [PMID: 38123521 DOI: 10.1002/chem.202303597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
Peptidomimetics have been extensively explored in many area due to their ability to improve pharmacological qualities and interesting biological activities. Cycles could be incorporated in peptides to reduce their flexibility, often enhancing the affinity for a certain receptor. Many efforts have been made to synthesize various peptidomimetics. Among them, the Ugi reaction is a popular way for the synthesis of peptidomimetics because it provides peptide-like products. The Ugi reaction consists of the condensation of an aldehyde or ketone, a carboxylic acid, an amine, and an isocyanide usually giving a linear peptidomimetic. In order to obtain other linear, cyclic or polycyclic peptidomimetics, the acyclic products have to undergo additional transformations or cyclizations. This review covers the years from 2018-2023, regarding the synthesis of linear, cyclic and polycyclic peptidomimetics, employing Ugi reactions eventually followed by post-Ugi transformations. Organo-catalyzed reactions, base-promoted reactions, and metal-free reactions toward peptidomimetics are highlighted.
Collapse
Affiliation(s)
- Chao Liu
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Leonid G Voskressensky
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st. 6, Moscow, 117198, Russian Federation
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium
| |
Collapse
|
2
|
Neo AG, Ramiro JL, García-Valverde M, Díaz J, Marcos CF. Stefano Marcaccini: a pioneer in isocyanide chemistry. Mol Divers 2024; 28:335-418. [PMID: 37043161 PMCID: PMC10876884 DOI: 10.1007/s11030-023-10641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/20/2023] [Indexed: 04/13/2023]
Abstract
Stefano Marcaccini was one of the pioneers in the use of isocyanide-based multicomponent reactions in organic synthesis. Throughout his career at the University of Florence he explored many different faces of isocyanide chemistry, especially those geared towards the synthesis of biologically relevant heterocycles. His work inspired many researchers who contributed to other important developments in the field of multicomponent reactions and created a school of synthetic chemists that continues today. In this manuscript we intend to review the articles on isocyanide multicomponent reactions published by Dr. Marcaccini and analyse their influence on the following works by other researchers. With this, we hope to highlight the immense contribution of Stefano Marcaccini to the development of isocyanide chemistry and modern organic synthesis as well as the influence of his research on future generations. We believe that this review will not only be a well-deserved tribute to the figure of Stefano Marcaccini, but will also serve as a useful inspiration for chemists working in this field.
Collapse
Affiliation(s)
- Ana G Neo
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Universidad de Extremadura, 10003, Cáceres, Spain
| | - José Luis Ramiro
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Universidad de Extremadura, 10003, Cáceres, Spain
| | - María García-Valverde
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Jesús Díaz
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Universidad de Extremadura, 10003, Cáceres, Spain
| | - Carlos F Marcos
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Universidad de Extremadura, 10003, Cáceres, Spain.
| |
Collapse
|
3
|
Takallou A, Al-Siyabi M, Al-Shidhani S, Lotfi Nosood Y, Habibi A, Almaani A, Anwar MU, Al-Harrasi A. Preparation of pyridopyrazines through tandem Pd-catalyzed C-N/C-C coupling reactions of Ugi adducts. Org Biomol Chem 2023. [PMID: 38009012 DOI: 10.1039/d3ob01768k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
A Pd-catalyzed selective tandem cyclization of the Ugi adduct via Buchwald-Hartwig/C-H bond functionalization reactions has been reported. This sequence offers an interesting approach for synthesizing a wide range of pyrido[1,2-a]pyrazine-3,6-dione scaffolds under mild reaction conditions in moderate to excellent yields. The scope and limitations of the protocol are discussed.
Collapse
Affiliation(s)
- Ahmad Takallou
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman.
| | - Munir Al-Siyabi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman.
| | - Sulaiman Al-Shidhani
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman.
| | - Yazdanbakhsh Lotfi Nosood
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman.
| | - Azizollah Habibi
- Faculty of Chemistry, Kharazmi University, Daneshgah Square, Shahid Beheshti Street, 31979-37551, Karaj, Iran
| | - Alhajaj Almaani
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman.
| | - Muhammad U Anwar
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman.
| |
Collapse
|
4
|
Saeifard L, Amiri K, Rominger F, Müller TJJ, Balalaie S. Synthesis of Polysubstituted Pyrimidines through Palladium-Catalyzed Isocyanide Insertion to 2 H-Azirines. J Org Chem 2023; 88:12519-12525. [PMID: 37524078 DOI: 10.1021/acs.joc.3c01248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The domino process of the palladium-catalyzed coupling reaction of isocyanides with 2H-azirine provides various tetrasubstituted pyrimidines via one C-C bond and two C-N bond formations with satisfactory yields. The title compounds are obtained with good functional group tolerance, high atom economy, and broad substrate scopes.
Collapse
Affiliation(s)
- Leyla Saeifard
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| | - Kamran Amiri
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| | - Frank Rominger
- Organisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 271, D-69120 Heidelberg, Germany
| | - Thomas J J Müller
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| |
Collapse
|
5
|
Rezaei-Gohar M, Amiri K, Aghaie K, Nayebzadeh B, Ariafard A, Shiri F, Rominger F, Dar'in D, Krasavin M, Balalaie S. Domino Cyclization Reaction of o-Diisocyanoarenes for the Synthesis of Imidazo[1,2- a]pyridinobenzimidazole Backbones. Org Lett 2023. [PMID: 37487026 DOI: 10.1021/acs.orglett.3c02137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
An efficient procedure to access a variety of connected imidazo[1,2-a]pyridine and benzimidazole skeletons through the C-N bond was described as a new type of Buchwald-Hartwig reaction. Furthermore, the bis(imidazo[1,2-a]pyridin-3-yl)aryl-1,2-diamine scaffolds were obtained by changing the equivalent ratio of the starting materials. Some advantages of the protocol are the formation of four new bonds (C═C, C-N), a transition-metal-free reaction, a broad substrate scope, high yields, and mild reaction conditions. The reaction mechanism was confirmed on the basis of DFT calculations.
Collapse
Affiliation(s)
- Mohammad Rezaei-Gohar
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| | - Kamran Amiri
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| | - Kimia Aghaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| | - Behrouz Nayebzadeh
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| | - Alireza Ariafard
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran 1469669191, Iran
- School of Natural Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
| | - Farshad Shiri
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran 1469669191, Iran
| | - Frank Rominger
- Organisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 271, D-69120 Heidelberg, Germany
| | - Dmitry Dar'in
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Mikhail Krasavin
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| |
Collapse
|
6
|
Green and efficient one-pot three-component synthesis of novel drug-like furo[2,3–d]pyrimidines as potential active site inhibitors and putative allosteric hotspots modulators of both SARS-CoV-2 MPro and PLPro. Bioorg Chem 2023; 135:106390. [PMID: 37037129 PMCID: PMC9883075 DOI: 10.1016/j.bioorg.2023.106390] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/29/2023]
Abstract
In this paper, an environmentally benign, convenient, and efficient one-pot three-component reaction has been developed for the regioselective synthesis of novel 5-aroyl(or heteroaroyl)-6-(alkylamino)-1,3-dimethylfuro[2,3-d]pyrimidine-2,4(1H,3H)-diones (4a‒n) through the sequential condensation of aryl(or heteroaryl)glyoxal monohydrates (1a‒g), 1,3-dimethylbarbituric acid (2), and alkyl(viz. cyclohexyl or tert-butyl)isocyanides (3a or 3b) catalyzed by ultra-low loading ZrOCl2•8H2O (just 2 mol%) in water at 50 ˚C. After synthesis and characterization of the mentioned furo[2,3-d]pyrimidines (4a‒n), their multi-targeting inhibitory properties were investigated against the active site and putative allosteric hotspots of both SARS-CoV-2 main protease (MPro) and papain-like protease (PLPro) based on molecular docking studies and compare the attained results with various medicinal compounds which approximately in three past years were used, introduced, and or repurposed to fight against COVID-19. Furthermore, drug-likeness properties of the mentioned small heterocyclic frameworks (4a‒n) have been explored using in silico ADMET analyses. Interestingly, the molecular docking studies and ADMET-related data revealed that the novel series of furo[2,3-d]pyrimidines (4a‒n), especially 5-(3,4-methylendioxybenzoyl)-6-(cyclohexylamino)-1,3-dimethylfuro[2,3-d]pyrimidine-2,4(1H,3H)-dione (4g) as hit one is potential COVID-19 drug candidate, can subject to further in vitro and in vivo studies. It is worthwhile to note that the protein-ligand-type molecular docking studies on the human body temperature-dependent MPro protein that surprisingly contains zincII (ZnII) ion between His41/Cys145 catalytic dyad in the active site, which undoubtedly can make new plans for designing novel SARS-CoV-2 MPro inhibitors, is performed for the first time in this paper, to the best of our knowledge.
Collapse
|